
Chapter 14 Conclusion and Further Work
My goal was to understand how knowledge transfer in pair programming (PP) works and to
formulate results that are meaningful to practitioners. I qualitatively analyzed 27 industrial
PP sessions from ten companies and developed grounded theoretical concepts starting from
individual utterances over knowledge transfer episodes and to whole sessions. I validated the
high-level concepts with practitioners in four companies, none of which pointed to miss-
ing relevant elements. I therefore consider my overall theory of knowledge transfer in pair
programming to be theoretically saturated.

I summarize my research contributions and advice for practitioners in Sections 14.1
and 14.2; I propose directions for further work in Section 14.3.

14.1 Research Contributions
• An extensive review of practitioner and scientific literature on PP effectiveness, influ-
ence of knowledge, task types, and pair constellations, showing that the often employed
quantitative methods do not explain the observable effects and that qualitative approaches
are needed to understand the underlying processes and mechanisms (Section 2.3).

• A refined qualitative research process for collecting and analyzing data to understand
pair programming process phenomena based on video recordings (Sections 4.3 and 4.5).

• The first detailed description of Focus Phases of high productivity, which occur in some
pair programming sessions and had been reported by other sources before, as well as
their antagonist, the Breakdown, which had not been reported before (Section 6.3).

• The concept of Togetherness to describe what makes two software developers work
together as a pair. Handling its five factors well can lead to Focus Phases—and to Break-
downswhen not: Making sure to have a shared understanding of the system and of software
development in general, as well as maintaining one shared plan, and possibly dealing with
workspace awareness and a language barrier (Section 6.4). Prior PP research mostly did not
consider the pairs’ processes; differences in Togetherness might explain the effectiveness
variations observed in experiments.

• A taxonomy of Topics that are actually addressed in industrial pair programming sessions:
By far the most knowledge transfer pertains to system-specific S knowledge and only
some to general software development knowledge, or G knowledge (Section 7.3.1).

• The notion of knowledge transfer during pair programming being structured in Episodes:
During each, the pair pursues a Topic in one of six knowledge transfer Modes, i.e., Push,
Pull, Parallel or Co-Production, Silent or Talking Pioneering (Chapter 9).

• A characterization of pairs that is not based on hard-to-agree-on global developer expertise
(no ‘expert/novice’), but on task-specific Knowledge Needs (Sections 11.2 and 11.3).

• A Grounded Theory of PP session dynamics of pairs acquiring and transferring knowl-
edge: A relative difference in task-relevant S knowledge is addressed first; a relative
difference in task-relevant G knowledge is hardly a problem, and may even pose an
opportunity to transfer such knowledge after the pair acquired enough S knowledge to
work on the task (Section 11.4). Prior PP research, in which subjects often worked with
unknown systems or none, could not have observed this industrially relevant dynamic.

361

Excerpt of PhD thesis "Qualitative Analysis of Knowledge Transfer in Pair Programming" by Franz Zieris
(2020, Freie Universität Berlin, Germany), http://dx.doi.org/10.17169/refubium-28718

https://refubium.fu-berlin.de/bitstream/handle/fub188/28968/Dissertation_Zieris.pdf
https://refubium.fu-berlin.de/bitstream/handle/fub188/28968/Dissertation_Zieris.pdf
https://refubium.fu-berlin.de/bitstream/handle/fub188/28968/Dissertation_Zieris.pdf
https://refubium.fu-berlin.de/bitstream/handle/fub188/28968/Dissertation_Zieris.pdf
https://refubium.fu-berlin.de/bitstream/handle/fub188/28968/Dissertation_Zieris.pdf
https://refubium.fu-berlin.de/bitstream/handle/fub188/28968/Dissertation_Zieris.pdf
https://refubium.fu-berlin.de/bitstream/handle/fub188/28968/Dissertation_Zieris.pdf
https://refubium.fu-berlin.de/bitstream/handle/fub188/28968/Dissertation_Zieris.pdf
https://refubium.fu-berlin.de/bitstream/handle/fub188/28968/Dissertation_Zieris.pdf
https://refubium.fu-berlin.de/bitstream/handle/fub188/28968/Dissertation_Zieris.pdf


CHAPTER 14. CONCLUSION AND FURTHER WORK

14.2 Practical Applications

These pieces of advice were condensed frommy observations and address practitioners directly.

14.2.1 Maintain Togetherness

During pair programming, you and your partner want to work as a pair to possibly achieve the
benefits of better design, fewer defects, faster progress, knowledge transfer, and more enjoyable
work. This Togetherness, however, needs to beMaintained throughout a PP session. There are
some problematic signs to look out for:

• You do not understand the intentions behind your partner’s utterances and actions. Also:
You feel like your partner does not understand your intentions, e.g., she may take longer
than normal to react, her reaction may not match your actions, or she may not react at all.

• You cannot evaluate a proposal your partner made. Also: Your partner does not evaluate
your proposal, or makes a proposal of her own without addressing yours.

These are all conversational defects and they are worth clearing up. Not all defects are necessarily
problematic, but they may point to underlying problems such as:

• Lack of Shared SystemUnderstanding: You and your partner have no commonmental
model of the software system, no common way of referring to its parts and aspects.

• Lack of Shared Understanding of Software Development: You and your partner
have no common toolkit (e.g., known libraries or tools) or way of approaching certain
types of programming tasks and issues (e.g., writing tests before production code or using
a debugger).

• No Shared Plan: You and your partner do not have a common conception of what steps
to take to achieve which goal and where you are in the process.

• Limited Workspace Awareness: You and your partner cannot fully perceive each
other’s actions in the code editor, see and read the same things on the screen, or no-
tice what each of you is looking at.

• Language Barrier: You and your partner may have difficulties expressing or understand-
ing each other thoughts on a phonetic, lexical, or semantic level. Even within the same
natural language, words and phrases do not mean the same to everyone.

All these problems reduce your Togetherness, but all can be mitigated by communicating
explicitly. Not every PP session will have problems in each area, but too many unhandled
problems might result in a Breakdown of the pair process, which then has none of the expected
benefits and may be even worse than working alone. Addressing all the areas, however, might
lead to a Focus Phase where you and your partner complete each other’s thoughts and make
fast progress.
Further Reading: Chapter 6 on Process Fluency and Pair Togetherness.

14.2.2 One Topic at a Time

Sometimes during a session, there are multiple things you want to understand or clarify at
once, especially since there are two members in a pair who may want to pursue different
topics. Experienced pairs manage to temporarily Limit their Scope such that only one topic
is relevant at every given moment. Once they are done with it, they Return Explicitly to the
original topic to make sure to not lose track. Unexperienced pairs, however, may start new
lines of inquiry whenever something catches their attention, which leads to many expensive
context switches and makes backtracking more difficult.
Further Reading: Chapter 10 on Patterns of Episodes.

362

Excerpt of PhD thesis "Qualitative Analysis of Knowledge Transfer in Pair Programming" by Franz Zieris
(2020, Freie Universität Berlin, Germany), http://dx.doi.org/10.17169/refubium-28718

https://refubium.fu-berlin.de/bitstream/handle/fub188/28968/Dissertation_Zieris.pdf
https://refubium.fu-berlin.de/bitstream/handle/fub188/28968/Dissertation_Zieris.pdf


14.2.3 Choose Mode of Knowledge Transfer

14.2.3 Choose Mode of Knowledge Transfer

There are different styles for transferring existing knowledge and for acquiring new knowledge.
Depending on the situation and your preferences, there are differentModes to choose from:

• Pull vs. Push: Knowledge which one partner already possess can be transferred either
by a series of questions from the developer in need (Pull) or by explanations driven by
the more knowledgeable pair member (Push). Pushing has the advantage that it may
transfer knowledge whose lack the partner was not yet even aware of, which can also be
confusing for her if the point of the push does not become clear soon.
Some developers may also have difficulties giving pro-active explanations in push mode.
Switching to an interview-style pull mode might help those pairs.

• Co-Production vs. Pioneering Production: Lacking knowledge can also be acquired
through reading source code, using a debugger, or interacting with the application. Often,
both partners are interested in the topic and engage in Co-Producing the knowledge. In
case one partner is less interested, however, the other may Pioneer for a moment until
she is satisfied and then continue to work together.

• Silent Pioneer vs. Talking Pioneer: Some developers prefer to read source code for
themselves (Pioneer), even if their partner could explain it to them. If you decide to do
this as a pair, the reader should be a Talking Pioneer, that is, to make clear what she is
looking for and what she understood so far, so her partner can validate her findings and
give useful pointers when the time is right. A Silent Pioneer, in contrast, makes it more
difficult for the partner to follow along.

Further Reading: Chapter 9 on Episodes of Knowledge Transfer.

14.2.4 Embed Pair Programming Sessions in the Team Process

Before the Session Consider the technical task and the knowledge it requires about the soft-
ware system as such and about software development in general (e.g., frameworks, technology
stack, design patterns, testing strategies): What are your Knowledge Needs, i.e., what relevant
knowledge does either of you not yet possess? Are there One-Sided Gaps where one of you
knows more about some area, or Two-Sided Gaps where both of you lack knowledge?

A setting of Complementary Gaps can be mutually beneficial, because both partners can
bring in some knowledge advantage. If your pair constellation is not yet complementary,
maybe the task can be amended in a way that both partners’ respective expertise can come
into play, e.g., by keeping an eye open for code smells and possible refactorings.

A Two-Sided Gap regarding general software development knowledge, e.g., where both of
you do not understand some technology, will probably not make for a good PP session if you
also try to work on a technical task. Better choose a different task and/or pairing.

Discuss which Knowledge Needs you want to address in your session. Understanding the
task-relevant parts of the software system is usually required for both of you, but sometimes
only one needs to continue with the task and an unclosed One-Sided Gap may be tolerable.

After the Session Reflect on what either of you learned. Chances are that each of you
remembers different episodes. Together, you get a fuller appreciation of which knowledge you
transferred and acquired, and where newly discovered knowledge gaps are.

Further Reading:Chapter 11 on Session Dynamics and Section 13.2 on Preparing and Reflecting
on a PP Session.

363

Excerpt of PhD thesis "Qualitative Analysis of Knowledge Transfer in Pair Programming" by Franz Zieris
(2020, Freie Universität Berlin, Germany), http://dx.doi.org/10.17169/refubium-28718

https://refubium.fu-berlin.de/bitstream/handle/fub188/28968/Dissertation_Zieris.pdf
https://refubium.fu-berlin.de/bitstream/handle/fub188/28968/Dissertation_Zieris.pdf


CHAPTER 14. CONCLUSION AND FURTHER WORK

14.3 Further Work

My work is done, but there is more to do. The following two areas for further investigation
occurred to me while considering the limitations inherent to my data (Section 4.3.4):

Ad-hoc Pairings I have no idea in which regards spontaneous pairings are different from
the at least half-planned sessions that ended up in the recordings repository. Recording such
sessions would probably require an always-on setup to get rid of session start-up times (similar
to what Socha et al., 2015, 2016, did, see page 144).

Application Domain Knowledge Developers in consulting may encounter new domain
concepts more often than my pairs, who work in their company’s own product. Knowledge
Needs of this type might influence pairs in different ways than S and G knowledge do.

Just as I used the base layer (Salinger & Prechelt, 2013), further pair programming research
may build upon my methods and concepts. Based on interesting phenomena I have seen in my
data but not analyzed, I deem the following two areas particularly relevant and insightful:

Fluency and Togetherness The Fluency of most analyzed sessions was normal, with both
Breakdowns and Focus Phases being the exception. I do not think that splitting up the Fluency
concept into more than these three levels is useful: Even though the appearance of normal
PP process varies across sessions, these differences do not appear to matter much. Almost all
analyzed pairs manage to achieve something useful in their sessions, with not many avoidable
detours along the way. There are, however, three directions I consider useful:

• Focus Phases appear highly productive and enjoyable. But: Is there an actual difference
between sessions with and without Focus Phases, or are they just an occasional side-effect
of high Togetherness? If they are desirable, is there anything pair programmers can do
(e.g., more strict Scope Limiting) to get more and longer Focus Phases?

• Similarly, further types of Breakdowns are worth investigating. I heard anecdotes about
terrible pair sessions, but none of my recorded sessions came close to those stories.
Assuming these stories are not over-dramatized, there appear to be practically relevant
ways how PP can go ‘wrong’ which my concepts cannot describe.

• Finally, I only considered how pairs Maintain Togetherness regarding two factors:
Shared system understanding and shared understanding of software development. I provide
initial observations on how pairs deal with language barrier, workspace awareness, and
one shared plan in Section 6.4.4. There might also be more factors influencing a pair’s
Togetherness besides the five I identified.

Decision Making The Episode concept can easily be transferred to other process aspects of
pair programming, such as discussing design decisions. I also expect the Propellor concept to
be applicable (i.e., one or possibly both developer(s) being active rather than reactive), and
differentModes to exist, in particular something Push-like where one developer pitches an
idea, and something Co-Production-like where both partner go back and forth on something.
Similarly, the patterns of Branching Wildly, Scope Limiting, and Returning Explicitly strike
me as not necessarily specific to knowledge transfer.

Years of qualitative research and building on the base layer led to the concept of Togetherness.
Its five factors appear central to fully understanding how pair programming works: maintaining
(1) a shared understanding of the system and of (2) software development, (3) one shared
plan, (4) good workspace awareness, and (5) dealing with any language barrier. My Grounded
Theory of knowledge transfer explains the mechanisms of the first two factors to a degree that
is enabling and meaningful to practitioners; the foundation for the other three has been laid.

364

Excerpt of PhD thesis "Qualitative Analysis of Knowledge Transfer in Pair Programming" by Franz Zieris
(2020, Freie Universität Berlin, Germany), http://dx.doi.org/10.17169/refubium-28718

https://refubium.fu-berlin.de/bitstream/handle/fub188/28968/Dissertation_Zieris.pdf
https://refubium.fu-berlin.de/bitstream/handle/fub188/28968/Dissertation_Zieris.pdf
https://refubium.fu-berlin.de/bitstream/handle/fub188/28968/Dissertation_Zieris.pdf

