
Explaining Pair Programming Session Dynamics from
Knowledge Gaps

Franz Zieris
zieris@inf.fu-berlin.de
Freie Universtität Berlin

Berlin, Germany

Lutz Prechelt
prechelt@inf.fu-berlin.de
Freie Universtität Berlin

Berlin, Germany

ABSTRACT
Background: Despite a lot of research on the effectiveness of Pair
Programming (PP), the question when it is useful or less useful
remains unsettled.
Method: We analyze recordings of many industrial PP sessions
with Grounded Theory Methodology and build on prior work that
identified various phenomena related to within-session knowledge
build-up and transfer. We validate our findings with practitioners.
Result: We identify two fundamentally different types of required
knowledge and explain how different constellations of knowledge
gaps in these two respects lead to different session dynamics. Gaps
in project-specific systems knowledge are more hampering than
gaps in general programming knowledge and are dealt with first
and foremost in a PP session.
Conclusion: Partner constellations with complementary knowl-
edge make PP a particularly effective practice. In PP sessions, differ-
ences in system understanding are more important than differences
in general software development knowledge.
ACM Reference Format:
Franz Zieris and Lutz Prechelt. 2020. Explaining Pair Programming Session
Dynamics from Knowledge Gaps. In 42nd International Conference on Soft-
ware Engineering (ICSE ’20), May 23–29, 2020, Seoul, Republic of Korea. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3377811.3380925

1 INTRODUCTION
Software development is knowledge-intense. In their daily work,
software developers need to be knowledgeable about languages,
technology stacks, approaches to design, coding, testing, and debug-
ging, functional and non-functional requirements, and the system’s
current architecture and status. Rarely all of the relevant knowledge
is readily available and so “software development [...] is a knowledge-
acquiring activity” [4].

Pair programming (PP) is a practice of two developers working
together closely on the same problem. Surveys show that knowledge
transfer is an important expected benefit of pair programming
[7, 24] and some PP sessions’ main purpose is to transfer knowledge
[20, 25]. In practitioners’ expectations, knowledge transfer can mean
to: (1) Combine: The partners possess different knowledge to begin

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in 42nd International
Conference on Software Engineering (ICSE ’20), May 23–29, 2020, Seoul, Republic of Korea,
https://doi.org/10.1145/3377811.3380925.

with and these combine favorably for solving the session’s task
faster or better. (2) Understand: Two developers together acquire the
lacking knowledge faster and more reliably and thus catch defects
in the making and produce better solutions. (3) Learn: Beyond the
current task, the two developers learn together and from another,
improving their abilities to work on future tasks.

Research goals: Generally, we want to understand how PP ac-
tually works and want to provide actionable advice to practitioners
for effective PP (behavioral patterns and anti-patterns). Specifically
for this article, we want to understand the role of knowledge trans-
fer for how a PP session develops. We do not quantify effects and
do not compare to solo programming.

Research approach:We perform deep qualitative analyses of
a broad variety of industrial pair programming sessions.

Research contributions: First, we go beyond a simple dichotomy
of “expert” and “novice” developers based on years of work experi-
ence and instead characterize two types of knowledge relevant for
software development: system-specific S and generic G knowledge.
We use these types to characterize (a) the extent of the developer’s
knowledge needs for working on the current task and (b) how the
developers exchange and acquire knowledge to meet these needs.

Second, we describe how six different pair constellations (in terms
of the pair’s initial knowledge needs) shape the dynamics of the
whole PP session and how a single global structure emerges from
these six that is common to all analyzed PP sessions.

Third, we formulate and validate ideas on how practitioners may
use these insights to make more informed decisions about whom
to work with on which task and how to organize the resulting pair
programming session.

In the following Sections, we first summarize related work (Sec-
tion 2). We then describe our data collection and analysis method
(Section 3) and discuss the classification of knowledge needs that
is central for the present work (Section 4). We explain the idea of
pair constellations and our finding how they, in general, lead to the
overall session dynamics (Section 5). We describe five prototypes
of such session dynamics with examples (Section 6). We discuss the
validity our results and describe our first attempts at putting them
to practical use with industrial practitioners (Section 7) before we
conclude (Section 8).

2 RELATEDWORK
2.1 Pair Programming Effectiveness
Pair programming studies in education focus on learning outcomes
more than economic aspects of improved code quality and effort.
A meta-analysis has shown a positive effect of pair programming
on assignment and exam scores [23]. In industry, the focus is on

https://doi.org/10.1145/3377811.3380925
https://doi.org/10.1145/3377811.3380925

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Franz Zieris and Lutz Prechelt

effort spent and quality produced. Here, a meta-analysis [16] found
mere tendencies and a lot of between-study variance. Arisholm et
al.’s large (quasi-)experiment [3] could not determine consistent
moderating effects of task complexity and individual developer
expertise on pair performance.

However, experimental studies are strongly unrealistic: In indus-
trial contexts, it takes years to learn the specifics of a project and
become fully productive [27, 32]. PP appears to require some of
that learning to have happened before but can then help with the
rest [17, 30].

The pair members’ traits (e.g., personality type) as such appear
to have little impact on the effectiveness of PP performance [15, 31]
and even individual performance does not predict PP performance
well [12, 19], so it appears to be important how PP partners actually
work together.

2.2 Peeking Into The Pair Process
A few qualitative and qualitative-quantitative studies have looked
at the PP process itself. PP consists of a lot of discussions in which
both partners verbally contribute to almost all topics [8] with an
equal share on all levels of abstraction [9].

Chong & Hurlbutt [11] observed that a more experienced pair
member dominates the session while a newly hired partner would
ask many questions, time pressure permitting. Plonka et al. [20]
identified experts’ teaching tactics: nudging (making suggestions
instead of telling), preparing the environment (e.g., opening a useful
file), pointing out problems instead of telling the solution, gradually
adding information, or giving clear instructions.

Jones & Fleming [18] and our own prior work [34], however, has
shown that knowledge transfer in pair programming is not lim-
ited to such “expert-novice” constellations. There are episodes of
explicit knowledge transfer essentially throughout all PP sessions,
even “expert-expert” constellations. Jones & Fleming [18] identified
four types of knowledge that pair members transfer in bug-fixing
sessions: programming language details, development tools, code
structure, and how to reproduce a bug. We identified four modes
of individual knowledge transfer episodes [33, 34]: Pushing is ex-
plaining without prior request (akin to Plonka’s teaching tactics),
pulling is knowledge transfer driven by many questions of the
knowledge recipient. Co-producing means both developers acquire
and consolidate new knowledge together by e.g. code-reading and
discussion. Pioneering production means one pair member does this
alone (e.g., if the partner already knows or does not care). PP only
works well as long as the partners frequently resynchronize their
ever-changing session-specific knowledge [33, 34].

We are not aware of a characterization of PP sessions as a whole
that explains what makes pair programming work (or not) and
where the high variance seen in experiments likely comes from.

3 RESEARCH METHOD
3.1 Type and Origin of Data
We analyze sessions of professional software developers working
in pairs on their every-day development tasks. Part of our data we
draw from the PP-ind repository of industrial pair programming
session recordings collected by Plonka, Prechelt, Salinger, Schenk,
Schmeisky, and Zieris between 2007 and 2016 [35]. This repository

ID Length Pair Session Content

Company A: Content Management System (Java, Objective-C, SQL)
AA1 02:22 A1 A2 Fix five similar bugs touching both frontend & backend

Company B: Social Media (PHP, JavaScript, SQL, HTML, CSS)
BA1 01:47 B1 B2 Read foreign code, implement cache, discuss specification
BB1 01:21 B1 B2 New feature from scratch (template); discuss requirements
BB2 01:51 B1 B2

↰

impl. model, controller, template; discuss requirements
BB3 01:32 B1 B2

↰

implement template, controller; discuss requirements
Company C: Graphical Geo Information System (Java)
CA1 01:18 C1 C2 Implement new form in GUI (C1 already started)
CA2 01:14 C2 C5 Architecture discussion (C5 already started), refactoring
CA3 02:10 C6 C7 Implement context menu entry, incl. test case & refactoring
CA4 01:34 C4 C7 Implement selection feature w/ special key-binding
CA5 01:23 C3 C4 Implement feature to split graphical elements

Company D: Estate Customer Relationship Management (Java, XML)
DA2 02:23 D3 D4 Planned feature impl., turned to widespread refactoring

Company E: Logistics and Routing (C++, XML)
EA1 01:17 E1 E2 Step-by-step debugging of error in route display

Company J: Data Management for Public Radio Broadcast (Java)
JA1 01:07 J1 J2 Walkthrough of J2’s code, discuss possible refactorings
JA2 01:15 J1 J2 Review of J2’s new API, define requirements

Company K: Real Estate Platform (Java, SQL, CoffeeScript)
KA1 02:00 K1 K2 Dev. env. setup, discuss inter-system API design, 1st impl.
KB1 00:53 K2 K3 Add new class to model, write and debug database migration
KC1 00:59 K2 K3 Test env. setup, discuss test approaches for GUI feature
KC2 02:01 K2 K3

↰

trying diff. test approaches, struggling w/ debugger

Company O: Online Project Planning (CoffeeScript)
OA1 01:24 O3 O4 Understand foreign component, try to read state for testing
OA2 01:32 O3 O4

↰

try to set up (parts of) component for testing
OA5 01:09 O1 O3 Bug fix: amend test cases, refactor prod. code, fix the bug
OA8 01:16 O3 O4 Failing test: Investigate prod. and test code, correct mocks

Company P: Online Car Part Resale (PHP, SQL)
PA1 00:58 P1 P2 Walkthrough of DB migration (written by P1), discuss req.
PA2 01:30 P1 P2

↰

test of migration, debugging, refactor test cases
PA3 01:31 P1 P3 Implement new API endpoint w/ tests (P3 already started)
PA4 01:42 P1 P3

↰

implement DB access with OR-mapper

Sessions AA1 to KC2 were selected from the PP-ind repository [35]; OA1 to
PA4 were recorded for this study (see Section 3.1). Some sessions continue
an earlier one (

↰

). Sessions OA1 to OA8 are in English, all others are in
German. Developers C4, C6, and O3 are female.

Table 1: Context & characterization of analyzed PP sessions

contains 52 recordings of 32 pairs from 11 different companies
featuring 49 developers working on many different types of tasks.
These sessions have a typical length of 45 minutes to 2.5 hours,
averaging 1.5h. Developers were not restricted in their choice of task
and partner; participation was voluntary and based on informed
consent. Each session has a unique identifier, such as CA2 which
denotes the third company, first project, second session. Developers
are identified by their company and an index, such as C4.

Each recording comprises a desktop screen-capture, a webcam
video showing the upper bodies of the two developers, and an
audio track with the developers’ conversation. Most recordings are
complemented with questionnaires with self-reported developer
backgrounds and developers’ characterization of the session’s task.

For this study, we recorded 14 additional sessions in two compa-
nies (O and P) in similar manner, featuring 8 developers in 8 pair
and “mob” constellations (groups of three or four). We do not dis-
cuss mob sessions here. See Table 1 for an overview of the sessions
analyzed for this study. Additionally, we conducted 1-on-1 and
group interviews with developers, scrum masters, and technical
managers from companies O and P in order to gather more back-
ground information and to validate our findings (see Section 7.3).

Explaining Pair Programming Session Dynamics from Knowledge Gaps ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

All companies (A to P) develop their own software product in-
house, so that the application domain is stable for the developers.
This is different for consulting companies whose developers more
often encounter a new application domain. For validation, we also
conducted individual and group interviews with developers and
technical managers in two consulting companies Q and R (but did
not record PP sessions).

3.2 Analysis Process
We base our research method on the Grounded Theory Methodol-
ogy (GTM) in its Straussian form [29]. In particular, we make use of
the practices of open coding, axial coding, and selective coding [29,
Chapters 5, 7, 8]; we applied theoretical sampling to focus more on
the interesting phenomena once we identified them and to reach
theoretical saturation [29, Ch. 11].

We selected sessions in the manner of theoretical sampling [29,
Ch. 11] with different “pair constellations” who work on different
types of tasks (e.g., implement new feature from scratch, amend
existing feature, bug fixing, module integration, refactoring and
other maintenance, testing)—see Table 1 for information on the
analyzed sessions.We did not transcribe the sessions, but performed
our analysis directly on the video material.

3.2.1 Open Coding. During open coding data is “broken down” and
conceptualized as “what it is” [29, p. 63]. Existing grounded con-
cepts strengthened our theoretical sensitivity [29, Ch. 3]. To help
with reconstructing what the pair programmers are doing, we em-
ployed the base layer for PP research [21]. It conceptualizes certain
speech acts [5]: A set of 68 concepts structures the PP process with
utterance-level granularity into so-called “base activities” such as
making and evaluating proposals [21, Ch. 4 & 6] or asking questions
and offering explanations [21, Ch. 16]. We used the base concepts
to identify session segments relevant for our general interest in
knowledge transfer phenomena; we reuse our notions of knowledge
transfer episodes andmodes (push, pull, etc., see Section 2.2 and [33])
as vocabulary to talk about PP processes throughout this paper. We
illustrate this with a concrete example in Section 3.2.2.

An early result of our open coding was our operationalization
of knowledge and different knowledge types (see Section 4). We
came back to open coding and constant comparison whenever
new insights from axial and selective coding required amending
or adding concepts. In this article, we typeset our new concepts in
blue sans-serif font as such: Some Concept; for brevity, we do not
report on intermediate concepts.

3.2.2 Analysis Process Example. What follows is an annotated tran-
script from the beginning of session EA1 (0:04:23–0:14:00) where
developer E2 explains to his colleague E1 what he already knows
about a display error of route segments on a map. The software
is running in debug mode, execution is halted at a breakpoint. E2
switches between source code and GUI to explain the observable
failure and related code segments. The transcript is translated from
the original German dialog and slightly shortened (“[...]”), with
marked <developer actions> and source code identifiers. We
annotate base concepts [21] (flushed right, per utterance) and knowl-
edge transfer episodes with their modes [33] (semi-graphically in
the right margin).

E2: “I’ll show you what I did [...] The error is this [...] you see, the last
segment has an extra point.” explain_knowledge

E1: “Yep.” agree_knowledge
E2: “The last point should have been this one, but it takes that one.

<hovers two points in GUI>” explain_knowledge
E1: “Yes.” agree_knowledge

E2 explains and E1 agrees for five minutes in this fashion.
E2: “<looking at source code> result is the point count [...] which

gets increased here.” explain_knowledge
“<opens inspector> And now it’s 131.” explain_finding
“Before it was 1, I guess that’s the start point.”propose_hypothesis

E1: “M-hm.” agree_hypothesis
E2: “And then 130 were added.” explain_finding

“And now they are in this pPoints, there <opens inspector> they
are.” explain_knowledge

E1: “The polygon points of the route, they are still in there?”
ask_knowledge

E2: “Yes, exactly. This TraceFerry() has an output parameter where
the points get copied to.” explain_knowledge

E1: “M-hm.” agree_knowledge
E2: “It’s called multiple times. It’s a big array, first for the stub, and

later it says ‘copy starting here’.” explain_knowledge
E1: “M-hm.” agree_knowledge
E2: “And in TraceFerry() they get copied.” explain_knowledge
E1: “OK.” agree_knowledge
E2: “Exactly. And, erm, now in this pPoints array, there are the points.”

explain_knowledge
“The last point should be correct now. Or it’s not. We’ll see about
that.” propose_hypothesis
“[...] <inspects values> Yes, it is the one, it’s doubled. So, the error
is somewhere in TraceFerry(). [...]” explain_finding

E1: “So you say, it’s actually—we interrupt the route—I mean <takes
mouse> it goes here, goes here, goes back again, and takes that as
the endpoint, or what?” ask_knowledge

E2: “Exactly, it got all these points first, then this one, then that one
instead of this.” explain_knowledge

E1: “Yes, and goes back again. OK.” agree_knowledge
E2: “[...] I first thought it goes wrong here, but it’s not. Instead it’s

TraceFerry(), where it comes out wrong.” explain_knowledge

E2
push

E1
pull

E1
pull

With a long push and two shorter pull episodes it took the pair
almost 10 minutes to get the point where E2 already was. After they
reached the limits of E2’s existing understanding, the pair then
continues in co-produce mode, debugging the source code together.

Our research interest in knowledge transfer led us to two ques-
tions: (1) What is the effect of this behavior? (2) What role does it
play in the session overall? We come back to these questions and
the above excerpt in Sections 4.2.1 and 5.3.1 to illustrate how we
arrived at our concepts.

3.2.3 Axial Coding. In axial coding one considers the conceptual-
ized behavior: what phenomena it is directed at, its context, and
its consequences [29, Ch. 7]. In our case, the behavior is pair pro-
grammers transferring knowledge in episodes, and the phenomena
are perceived knowledge gaps pertaining to different knowledge
types. As the relevant context for all their in-session behavior, we
identified the developers’ Knowledge Needs resulting from their
individual pre-existing knowledge and the specific demands of
their task (see Section 4). We did not consider higher levels of the
conditional matrix [29, Ch. 10] such as team or company.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Franz Zieris and Lutz Prechelt

3.2.4 Selective Coding. Selective coding is the integration of con-
cepts to a theory around a central narrative under systematic con-
sideration of context properties [29, Ch. 8]. We identified system-
specific knowledge, S, as the most important knowledge type, and
generic software development knowledge, G, as another (see Sec-
tion 4.1). Our pairs also talked about other types of knowledge,
such as their application domain or aspects of the company cul-
ture, but these were rare and had little relevance in their sessions.
We considered pair constellations based on the developers’ knowl-
edge needs regarding the two dimensions S and G which led to
six recurring initial constellations (see Section 5). Across all these,
we identified three common prototypes of session dynamics (see
Section 6).

3.2.5 Validation and Theoretical Saturation. We validated our find-
ings with our subjects in companies O and P, and—as another
round of theoretical sampling [29, Ch. 11]—with developers and
technical managers from consulting companies Q and R for whom
knowledge of the application domain presumably works differently
(Section 7). Theoretical saturation is reached when collecting fresh
data no longer sparks insights with regard to new properties of the
central concepts [10, p. 113]. Our discussions with companies O, P,
Q, and R brought no new facets regarding our concepts to light, so
we reached theoretical saturation in this sense.

4 KNOWLEDGE NEEDS
We do not a characterize developers as “experts” or “novices”, but
consider their concrete situation in a PP session. They work on
some task with specific knowledge demands and bring some body of
existing knowledge to the table. Their “task” is not necessarily well-
defined and can be modified (explicitly or implicitly) as the session
proceeds. Depending on the pair’s design decisions, for instance,
different areas of knowledge become more or less relevant. These
decisions, in turn, may depend on what the developers know and
do not know.

Considering all that happens in a PP session, each developer has
an overall Knowledge Need, her gap in knowledge with regard to
the current task, which we operationalize as follows:

(1) Direct Operationalization: Individual knowledge transfer
episodes have a topic [33]. When developer A explains something
to developer B about some topic X, and B acknowledges this expla-
nation (as seen several times in Section 3.2.2), this indicates that B
had a Knowledge Need regarding X (and A had not). Occasionally,
pair programmers also express uncertainty or talk about their re-
spective knowledge levels explicitly [21, Ch. 13–15], thus marking
a Knowledge Need.

(2) Indirect Operationalization: Developers may not yet be aware
of the extent of their Knowledge Need and thus do not formulate
questions to trigger an explanation. But signs like correcting an
obvious mistake or being puzzled by new discoveries allow the
researcher to see it. Conversely, being able to formulate and evaluate
proposals indicate a lower Knowledge Need.

For the sake of simplicity, we also speak of a developer’s “knowl-
edge level” to refer to all the things she demonstrates to know in a
PP session. After a successful knowledge transfer episode, her overall
Knowledge Need gets lower and her level gets higher.

Considering not only one developer but the whole pair, we call a
knowledge gap either one-sided or two-sided depending on whether
only one partner or both have an according Knowledge Need.

4.1 Types of Knowledge
Nearly all knowledge transferred in our PP sessions relates to solv-
ing the session’s task. At first, we characterized pair members as
either having a high or a low Knowledge Need regarding this “task
knowledge”, and later distinguished three degrees (details follow).

In our data, there were knowledge transfer episodes pertaining
to many different types of knowledge, such as the company culture
and structure or the application domain. But the vast majority of
the topics across all sessions can be classified into two major types:

S (“specific”) knowledge is about understanding the software
system at hand: Its requirements, its overall architecture, and gazil-
lions of small facts regarding its detailed design structure, test/build
infrastructure and procedures, configuration state, defects, idiosyn-
crasies, implementation gaps, and so on.

G (“generic”) knowledge is about general software development
methods and technology: Programming language details, design
patterns, development tools, and technology stacks, etc.

S knowledge is mostly narrow and factual. Large numbers of
S items are typically transferred in any PP session. In contrast, G
knowledge is more widely applicable, but much fewer G items are
typically transferred in a PP session.

The following subsections provide (first for S, then for G) a
characterization for different degrees of Knowledge Needs.

4.2 S need – Need for System-Specific
Knowledge

Considering all in-session activity from a researcher perspective, a
pair member has an overall need for S knowledge, the S need. We
characterize three degrees of S need:

• Low S need: The developer provides explanations about the
current state to her partner, she alludes to things not yet seen
in the session, and she evaluates findings, explanations, and hy-
potheses proposed by her partner. She does not ask questions
about S knowledge and is rarely puzzled by new discoveries.

• Mid S need: The developer has some knowledge about the
system in general, but not enough about the particular area
relevant for the task. For instance, she may be not up-to-date
with recent changes in that area. The developer may acknowl-
edge her lack of knowledge and proposes to “look into things”
or formulates hypotheses. Alternatively, if she is not aware of
her lack of S knowledge or does not act on it, she might make
proposals that are misled and which her partner rejects thus
pointing out the S need.

• High S need: The developer knows barely anything about
the system’s relevant parts. She acknowledges her lack of
knowledge and asks her partner about the system. She does
not refer to system parts or properties until the pair has looked
at them. Proposals and hypotheses coming from the partner
are not evaluated.

The degree of S need depends on prior involvement with the rel-
evant parts of the system (e.g., authorship), on forgetting details,
and many specifics of the current task.

Explaining Pair Programming Session Dynamics from Knowledge Gaps ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

4.2.1 Analysis Process Example (c’d): But how did we find the S need
concept? As explained in Section 3.2.1, we use the pair program-
ming literature to increase our theoretical sensitivity. Salinger et al.
[22], for example, identified the role of a task expert, who provides
her partner with task-relevant knowledge. In the example from
Section 3.2.2, developer E2 would be the task expert who explains
all he knows about the bug. However, our first question, What is
the effect of this?, cannot be answered from this perspective. It oc-
curred to us that what matters here is the partner, E1, who gains
system understanding: The beginning of the session EA1 is about
addressing his S need.

4.3 G need – Need for Generic Software
Development Knowledge

Again, we distinguish three degrees of G need based on the devel-
oper’s behavior:

• Low G need: The developer is able to explain the meaning of
programming language idioms or how to use certain libraries
or tools, if need be. She does not ask questions in this regard.

• Mid G need: The developer asks informed questions about
the used technology or the development approach, and occa-
sionally reads in the documentation.

• High G need: The developer asks fundamental questions
concerning programming language, standard libraries, or basic
tools, and/or uses documentation extensively. She might also
express uncertainty and verbalize a lack of ideas on how to
proceed.

By these terms, “experts” and “novices” would be developers with
low and high G needs, respectively, for the majority of tasks in
their job. The same developer will often have different degrees of S
need (and can have different degrees of G need) for different tasks.

In practice, a developer’s G and S needs are not independent. For
an individual developer and a given task, the combination of per-
fect system understanding (low S need) and no applicable general
development knowledge (high G need) is unlikely, since under-
standing a system without having a grasp of the used technology is
difficult. Having a low G need and high S need, on the other hand,
is plausible and may lead to quick acquisition of S knowledge.

5 PAIR CONSTELLATIONS AND
SESSION DYNAMICS

5.1 Session Context and Goal:
Initial and Target Constellation

With respect to a specific development task, each developer has a
degree of S andG need, possibly changing over time. A PP situation
can thus be characterized by each developer’s momentary S and G
needs.

For systematically solving a task, the pair needs to address its
S need and attain complete understanding of the system’s task-
relevant aspects. Depending on the goal of the particular session,
the pair has one ormore options to break this down to the individual
level: Meeting the S need is often desirable for both developers,
e.g., if they are expected to be able to work on similar tasks alone
or with a different partner in the future. In other cases, the pairs

are content with only one developer meeting her S need, leaving a
one-sided S gap between the partners.

In contrast to S, not all G needs have to be addressed in a session.
More complete G knowledge facilitates important steps such as
addressing an S need, designing a good solution, implementing and
debugging that solution smoothly. Filling a G gap may be part of
the session goal, e.g., for training purposes.

From a researcher’s perspective, pair programmers begin a ses-
sion with an initial constellation of each partner possessing some
S and G knowledge, plus a more or less clear idea of the session
task, i.e., what they want to achieve with their session. The task
might be for example fixing a problem (for which S needs have to
be met) or educating the partner (addressing an S and/or G need in
some respect). The intended outcome of a session in terms of S and
G needs to be met denote the session’s target constellation.

5.2 Constellation Changes
Overall, knowledge gaps tend to shrink during a session. It is im-
portant for a pair to become aware of knowledge gaps, but in our
terminology, their G and S need are not affected by such insights
alone. In principle, pairs can take two approaches to deal with
knowledge gaps they are aware of: (1) Limiting the scope of the
current task, thereby making some of their S and/or G needs ob-
solete or (2) transferring existing or acquiring new knowledge to
address their respective S or G needs.

As for (1): In our data, a pair’s initial session scope discussion
is often not recorded. But our developers also sometimes decide
during the session that some subtask is not mandatory and stop
pursuing it (e.g., in the beginning of session BB1, Section 6.1.1), or
they may shift their focus mid-session, thus effectively changing
what knowledge is relevant (e.g., in DA2 which should have been a
feature implementation but pivoted to a large refactoring).

As for (2): The remainder of this paper is concerned with this
approach only, that is, with knowledge transfer.

5.3 Overall Session Dynamics
In all analyzed sessions, the pairs first deal with a one-sided S
gap if one exists, then with any two-sided S gap, both limited by
their awareness of these gaps. We therefore call these the primary
gap and the secondary gap. The target constellation acts as a
moderator for both steps: In case not both developers need to reach
high S knowledge, parts or all of the primary and secondary gap
may remain unfilled. Once the S needs are met to the intended
degree (and only then), the pair transfers (or does not)G knowledge
if one partner has a G need: the G opportunity.

Different orders appear to be the exception: (1) If neither partner
possesses required G knowledge (two-sided G gap), the pair will
have to acquire it together and this can happen when a secondary
gap is still open. (2) If two-sided S and G gaps are large enough,
the pair may become overwhelmed by difficulty. The session then
breaks down and no or nearly no progress happens.

5.3.1 Analysis process example (c’d): How did we find the concepts of
primary and secondary gap? Remember Section 3.2.2, where we dis-
cussed E2’s bug-related explanations to E1 and our second question:
What role does it play in the session overall?

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Franz Zieris and Lutz Prechelt

Considering the session EA1 as a whole, the long-running push
episode in the beginning enabled the pair to work as peers to then
solve the actual task together. In our data, this is common behavior
in the beginning of a session, especially when one developer already
worked on the task before. It occurred to us that these pairs start
with an asymmetric situation regarding their S needs and they
turn it into a symmetric one which allows them to make further
progress closely together (co-produce episodes in the case of EA1).
So achieving S need symmetry comes first (closing the primary gap),
acquiring the remaining S knowledge together follows (closing the
secondary gap).

5.4 Session Visualizations
Below, we will provide schematic representations of pairs’ knowl-
edge constellations and their trajectory throughout several exam-
ple sessions (Fig. 2). Each developer is represented by a point on
a two-dimensional coordinate system, with the degree of G need
decreasing from left to right and the degree of S need from bottom
to top. In a qualitative sense, the vertical distance between a pair’s
two points hence represents the primary gap, the distance from
the top represents the secondary gap, and the partner’s horizontal
distance represents the G opportunity.

The pair’s points are drawn at their initial constellation. The
reduction of knowledge gaps is indicated by arrows originating at
the developer whose understanding improves: upward for increas-
ing S knowledge, to the right for improved G knowledge. Multiple
arrows starting at the same height indicate multiple attempts made
to address a Knowledge Need. The trajectories do not depict tech-
nical progress at all. Arrow length does not represent time at all,
but only the (qualitative!) reduction of a knowledge gap. Arrow
color indicates the mode in which the knowledge gap is narrowed
(see Section 2.2 and [33] for details). The numbers in the trajecto-
ries correspond to numbers in the article text. For readability, a
single arrow (e.g.,) might represent multiple knowledge transfer
episodes pertaining to similar topics.

6 SESSION DYNAMICS PROTOTYPES
We will now describe how pairs actually deal with their Knowledge
Needs: We have identified six different initial constellations in our
data, each having a different combination of primary and secondary
gaps and G opportunity, each leading to a characteristic session
dynamic. These form a set of session dynamics prototypes that is
very useful to understand how PP works and when (and for which
goals) it is most useful. See Fig. 1 for the initial constellations of all
analyzed sessions. Other initial constellations are conceivable, but
we have not seen them.

6.1 No Knowledge Gaps, No Opportunity
In many pair programming sessions, there is a point at which both
partners have all necessary system understanding as well as all
needed general programming knowledge to work productively on
the task. This is the No Relevant Gaps constellation (see Fig. 1).
The only pair we have seen that had this as its initial constellation
forms our first and simplest example.

6.1.1 Example 1: Greenfield Development. Developers B1 and B2
work on a new feature from scratch over the course of one afternoon

S need

G need
high

hi
gh

mid
m
id

low
lo
w

No Relevant Gaps
One-Sided G Gap

Complementary Gaps

One-Sided S Gap

Two-Sided S Gap

Too-Big Two-Fold Gap

BB1
BB2
BB3KC2

PA3
PA4

CA1DA2
KB1

JA1

JA2 EA
1

C
A
2

C
A
4

PA
1

K
C
1

AA1
BA1
CA5

CA3
OA5
PA2

KA1
OA8

OA1

OA2

S and G need denote a developer’s gap in task-relevant knowledge with
regard to the specific software system and generic software development,
respectively (see Section 4.1). Each pair of points represents one PP session
(see Table 1); sessions are grouped in six recurring pair constellations.

Figure 1: Initial pair constellations of the analyzed sessions

in three sessions (BB1 to BB3) with short pauses in between. Both
are proficient in the involved technologies and need to interact with
existing code only through few and well-understood interfaces
(neither S nor G need). The newly developed code stays small
enough to be fully understood by both developers at all times.
Apart from a short orientation phase in the beginning, when they
decide on where to visually place the feature in the GUI, they are
in construction-only mode throughout the session, i.e., defining
requirements and discussing design proposals, with zero debugging.
B1 and B2 develop no S need through all three sessions while the
body of S knowledge increases along the way.

6.1.2 Discussion. This nice and easy initial constellation is likely
only in development-from-scratch situations, which are not fre-
quent. It is fragile and can be destroyed by any lengthy debugging
episode or by between-session pauses long enough to let developers
forget relevant details of what they built.

6.2 Dealing with a One-Sided S Gap
In some pair programming sessions, one developer has an S advan-
tage, e.g., because she already started work on the task. Two constel-
lations have this property: One-Sided S Gap and Complementary
Gaps, each of which happened to be the initial constellation of five
our analyzed sessions (see Fig. 1). Whenever a one-sided S gap—the
primary gap—exists, the pair addresses it first.

In most cases, the developer with the larger S need is aware
of the gap and the pair can address it proactively, as illustrated
in Section 6.2.1. If, however, she is not aware of her S need, she

Explaining Pair Programming Session Dynamics from Knowledge Gaps ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

S

GExample 2 (EA1)

E1

E2 (1)

(2)
S

GExample 3 (CA2)

C2

C5

(1)
(2)

(3) S

GExample 4 (AA1)

A1 A2

(1)
(2)

(1)

(3) S

GExample 5 (PA3/PA4)

P3

P1

(1)
(2)

S

GExample 6 (JA1)

J1

J2
(1)

(2)

(2)

(3)

(3)

S

GExample 7 (CA1)

C1

C2

(1)

(2) (2)
S

GExample 8 (KC2)

K2

K3

(1)

(2)

S

GExample 9 (OA1)

O3 O4

(1)
(2)

S and G denote a developer’s task-relevant knowledge with regard to the specific software system and generic software development, respectively. Arrows
indicate mode of knowledge transfer [33]: (solid line, blue): Pull; developer asks about topic of interest. (dashed line, red): Push; developer receives
not-explicitly-requested explanations. (dotted line, green): Pioneering; developer acquires new knowledge through reading source code/inspecting artifacts.

(double line, black): Co-production; both developers acquire new knowledge in a tightly coupled fashion (corresponding arrows are connected with a thin
line). Numbers refer to descriptions in main text.

Figure 2: Trajectories of discussed examples (Example 1 (BB1 to BB3) has No Relevant Gaps)

might make poor or non-applicable proposals which need to be
identified as such. This can take some time and be frustrating for
the developers, see Section 6.2.2.

6.2.1 Example 2: Bringing Partner Into Ongoing Work. In session
EA1, developers E1 and E2 want to fix a bug which E2 has already
worked on before (more S knowledge than E1). So E2 steps through
the code with a debugger, demonstrates the failure in the running
application, and comments on the state of individual variables
(pushes). His partner E1 asks for details (pulls). They quickly
close their primary gap (phase 1) and continue debugging together
(2). We already discussed phase (1) in the Analysis Process Example
in Section 3.2.2; see also Fig. 2 for the numbers.

6.2.2 Example 3: Closing The Primary Gap Painfully. In session
CA2, C2 and C5 want to implement a new feature for just one
edition of their software. C5 has already started the implementation
and is familiar with the system modularization (low S need). C2
does not know C5’s recent changes; additionally, some aspects of
the system’s architecture have slipped his mind (mid S need). It
takes the pair frustrating 11 minutes and multiple attempts to close
their primary gap (refer to numbers in Fig. 2):
(1) C5 tries to explain his recent changes and alludes to the under-

lying architecture that motivated them. C2 does not engage
in these push episodes: he does not listen to C5 at all and
keeps hushing him.

(2) Instead,C2 starts reading the source code (pioneering), which
leaves him puzzled several times, because he is not aware of
the underlying rationale. C5 tries to follow C2’s mostly silent
reading process and intersperses architectural explanations
(S pushes). C2, however, appears to misinterpret these as
a discussion of general design principles, which would be

G pushes, and ignores them. This continues until C2 even-
tually recognizes the underlying system structure and finally
understands C5’s changes from before the session.

With their primary gap closed, the pair continues in a Two-Sided
S Gap constellation and works on their secondary gap (3).

6.2.3 Discussion. The most common way how pairs address their
primary gap appears to be that the partner with more S knowledge
starts a push, into which the partner hooks in pulling for details.
In many sessions (e.g., CA4, EA1, JA1, and PA1) this is enough to
close the primary gap.

If the pair member with more S knowledge does not provide
good explanations in push mode, her partner with the S need
may take the lead with a more interview-style pull-driven mode,
e.g. in sessions CA1 and DA2.

If this is not enough to close the primary gap either, the partner
with the S needmay switch to reading up the necessary information
herself (pioneering). In session DA2, such a switch was necessary
when a partner could not explain well because of his lack of relevant
G knowledge. Developer C2 above, however, appears to generally

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Franz Zieris and Lutz Prechelt

prefer to pioneer for closing a primary gap, even though his
partner is willing and able to provide suitable information. Closing
a primary gap was the only setting where we observed issues due
to (presumed) personal preferences.

6.3 Dealing with a Two-Sided S Gap
Pairs that have no member with all relevant S knowledge need to
find ways to acquire it to close their joint S gap. Such a secondary
gap appears to be common: eight of our analyzed sessions had a
Two-Sided S Gap as their initial constellation (see Fig. 1), many
others reached this constellation after closing their primary gap.

6.3.1 Example 4: Pairing-Up Throughout. In session AA1, develop-
ers A1 and A2 want to fix five similar bugs and need to work with
two different sub-systems, neither of which is fully understood by
either partner. Since they both want to meet their S need, they keep
their understanding in sync along the way. Their session illustrates
a number of ways how pairs can deal with their secondary gap (see
Fig. 2 for the numbers):
(1) Co-produce: Most of the time, A1 and A2 address their sec-

ondary gap collectively in co-produce episodes where they
formulate hypotheses about the system, read source code, try
out the application, and integrate their insights.

(2) + Pioneer plus push: The developers disagree on the rele-
vance of some S topics. A2 occasionally pursues a pioneering
episode and afterwards explains what he learned (push). A1
hardly opposes A2’s initiatives, as some of them lead to task-
relevant insights which the pair probably would have missed
otherwise.

(3) + Co-produce plus push: During later co-produce episodes,
sometimes one developer is faster at understanding something
than the other (A1 is more proficient in one sub-system, A2 in
the other).1 In such cases, the faster developer would push
explanations for his partner to catch up.

6.3.2 Discussion. For closing a secondary gap, co-producing is
common behavior in many sessions (e.g., CA1, CA2, and JA1).

If one pair member understands faster, e.g., due to a G advantage
as in session CA1 (discussed below) or a local S advantage in some
area as in session AA1, a + co-produce plus push makes sure no
partner falls behind.

If the developers have different goals or preferences, not all
topics need to be understood fully by both and the more invested
pair member may + pioneer plus push. Occasionally, this also
happened in other sessions, such as JA1 (discussed below).

6.4 Opportunity: Reducing a One-Sided G Gap
A difference in G knowledge between the partners can be an oppor-
tunity to transfer valuable general software development knowl-
edge. In our sessions, pairs never seized their G opportunity before
any known primary gap and secondary gapwere closed. Some pairs
started from a One-Sided G Gap (e.g. in sessions PA3 and PA4),
others from a Complementary Gaps (e.g. JA1 or DA2) or Two-Sided
S Gap (e.g. OA5).

1One could split the S dimension for characterizing pair constellations that are comple-
mentary with regard to different parts of S, potentially leading to as many S dimensions
as there are topics. To keep the discussion tractable, we do not do this.

6.4.1 Example 5: Initially-Misunderstood Teaching. In sessions PA3
and PA4 (see also Fig. 2), frontend developer P3 and backend de-
veloper P1 work in the backend of their system. Both know the
relevant parts of the system well (no secondary gap), but P3 al-
ready started implementing a new API endpoint (small primary
gap). Since they are on P1’s technological home turf (no G need),
he understands P3’s explanations quickly and the primary gap is
soon closed (1). From thereon, P1 explains the newest PHP language
features and how to employ test-driven design whenever he sees
an opportunity (G pushes, (2)).

In session PA3, P3 misinterprets these explanations as a lead-in
for unnecessary S pushes and gets confused, but after talking to
P1 about P1’s intentions in a break he then acknowledges them as
valuable lessons in session PA4.

6.4.2 Example 6: Embracing a Difference. Session JA1 is about im-
proving the maintainability of a module that J2 wrote a year earlier
and J1 never saw before. The module is basically a state automaton
implemented with deeply nested if-statements. In addition to a
seized G opportunity, this session also illustrates how one devel-
oper (J1) does neither need nor want to fully met his S need as he
will only ever work on that module together with J2. Again, refer
to Fig. 2 for the numbers:
(1) The pair deals with its primary gap via a long running push

with hooked-in pulls: J2 explains and J1 asks for details.
(2) To address their secondary gap, J2 repeatedly reads through

the complex low-level control structure and then explains the
high-level states and transitions of the automaton (pioneer
plus push). Both partners take care to keep the pushes from
going into too much detail.

(3) After J1 got the big picture (only a mid S need left), the pair
starts reading source code together (reducing the secondary
gap further through co-production). In doing so, J2 looks for
code smells to explain possible refactorings (G pushes) thus
using the G opportunity.

6.4.3 Example 7: Missing the Opportunities. In session CA1, the
pair wants to implement a new GUI feature similar to an existing
feature.C1 alreadyworked on it for an hourwhenC2 joins him. This
gives C1 a modest S advantage, which needs to be addressed. C2 is
more proficient with the object-oriented paradigm (a G advantage).
They deal with their primary and secondary gap, but do not use
their G opportunity (see corresponding numbers in Fig. 2):
(1) To closeC2’s S gap,C1 first tries to explainwhat he did (push).

This is not effective and C2 starts to ask specific questions
about existing classes (pull), which C1 begins to answer. But
C2 quickly gives up on this in favor of trying out the new GUI
elements and reading in the new code himself (pioneering),
which eventually achieves the desired understanding.

(2) Later in the session, the pair is able to close newly detected
two-sided S gaps in co-production episodes. In these cases,
C2 is always the first to understand (presumably due to his
better G knowledge) and often explains his findings to C1
(push).

During the session, there are multiple occasions at which C2 could
have explained some G knowledge to C1 (i.e.,), e.g., how he got
to his insights so swiftly or how some of C1’s proposals violate

Explaining Pair Programming Session Dynamics from Knowledge Gaps ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

good design. But he does not and merely alludes to the underlying
knowledge.

6.4.4 Discussion. While session PA3 (see Section 6.4.1) was at
times frustrating for P3who only received explanations, but had no
opportunity to provide some, Complementary Gaps constellations
such as in JA1 (see Section 6.4.2) or DA2 and KB1 (see Fig. 1) were
mutually satisfying sessions: One developer needs to understand
the system (S need), and her colleague may help with this. Yet,
the developer with the S need can use her advantage to teach
G knowledge. Session CA1 shows, however, that not all pairs in
such a constellation seize the G opportunity (see Section 6.4.3). A
constructive pattern for the partner with the higher G need might
be to pull forG knowledgewhenever the partner does something
“magic” without pushing.

6.5 Two-Sided G Gaps?
There are sometimes PP sessions where both pair members lack
G knowledge needed for their task—a non-routine situation. We
have seen one instance of a pair attempting to acquire it (Session
KC2, Section 6.5.1). If both pair members have a high S need and a
high G need, the pair lacks the technical background to build up
the required S knowledge and faces a Too-Big Two-Fold Gap. We
have seen this constellation twice with the same pair (Sessions OA1
and OA2, Section 6.5.2).

6.5.1 Example 8: It’s not easy! In session KC2 (see Fig. 2), devel-
opers K2 and K3 want to write a test case for an auto-completion
feature K2 implemented earlier. They already addressed their pri-
mary gap in session KC1 before lunch and now want to program-
matically simulate keystrokes. Both have a mid G need: they know
their tools and where to look for help, but cannot implement a
test case right away. They attempt to read documentation together
(G co-production (1)), which helps K2 somewhat, but not K3.
Forty minutes later(!), they notice this one-sided G gap and close it
(G push (2)). But they never complete their G knowledge acqui-
sition and after two hours they give up. The next day, K3 said he
found a simple solution alone.

6.5.2 Example 9: Disaster. In session OA1, the developers were
tasked to write test cases for some new functionality they did not
implement andwhich is built with a technology they are not familiar
with. O3 and O4 have both a high S need and a high G need. O3
has a slight S advantage, as she already opened and skimmed the
relevant source code. O4 has a slight G advantage since he knows a
bit more about the programming language. (See numbers in Fig. 2.)
(1) To close the small primary gap, O4 has to pioneer since O3

does neither push nor react to O4’s pull attempt.
(2) For most of the session, they address their secondary gap

and try to acquire S knowledge by individually reading in the
source code (pioneering). At some point, and for lack of better
ideas (high G need), they together resort to “printf” debugging
(co-production), but do not gain much S knowledge in this
way either.

The developers express confusion on fundamental issues (e.g., O3:
“Type? Function? I don’t even know what this is.”), but never attempt
to address their G need. The same pattern continues in session OA2

on the same day after lunch. The pair eventually decided to not
continue with this task.

6.5.3 Discussion. A two-sidedG gap is too rare in our data to make
much of it, but it appears to be difficult to resolve. In session KC2,
the pair had no S gap to deal with and presumably were simply too
tired to put their newly gained G knowledge to proper use.

Our interpretation of session OA1 and OA2 is that the situation
was so difficult overall that the pair failed to manage the combined
complexity of task solving plus coordinating the PP process. We
do not expect Too-Big Two-Fold Gap to be common as developers
likely anticipate and avoid such a situation. In the OA1/OA2 case,
for example, the pair only tackled this task because they were the
only team members available and the task had high priority.

7 VALIDATION AND
APPLICATION IN PRACTICE

Our analysis yielded two results: (1) A characterization of two types
of task-relevant knowledge, generic software development knowl-
edge, G, and system-specific knowledge, S; and (2) descriptions of
six different PP session types (based on the degrees of the develop-
ers’ G and S needs) for which we claim (based on our observations
of the overall session dynamic, see Section 5.3) that some types
make PP particularly favorable and that this fact can be useful in
practice.

We will now discuss some limitations inherent in our analysis
approach (Section 7.1), support the G/S concepts by relating them
to similar concepts in existing literature (Section 7.2), and validate
the session dynamics results and our usefulness claim by describ-
ing practitioner reactions to them and experience with practical
industrial application of the ideas (Section 7.3).

7.1 Limitations
(1) We only get to see knowledge that can be verbalized (as opposed
to tacit knowledge) and so mostly deal with declarative knowledge
(as opposed to procedural knowledge) [2, p. 78]. In software engi-
neering, the procedural knowledge relies on a thick foundation of
declarative knowledge, so this is hardly a problem at all.

(2) We only get to see knowledge-in-transfer that is actually ver-
balized, but not the larger body of knowledge-in-use. The difference
is smaller than it sounds because in practice there is almost always
some difference in understanding between pair members that leads
to a verbal exchange in the context of the session.

(3) One-sided knowledge gaps are easier to see than two-sided
ones, but we usually detect the latter as well because they become
visible as uncertainty on how to proceed.

(4) Overall, we found no indication that either of (1)–(3) is prob-
lematic but they make it impossible to be sure that developers
always address primary and secondary gaps when they exist. But
if they address them, they do it in that order.

(5) Furthermore, all our developers and work context were west-
ern. We have not seen all kinds of software engineering settings
(e.g., no consulting contexts). However, our data comes from nine
different application domains.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Franz Zieris and Lutz Prechelt

7.2 G and S in Existing Literature
The likelihood that the concepts G and S are contrived is lower if
other people report on similar concepts, so we integrate them back
into existing literature [28].

Jones & Fleming [18] also investigate knowledge transfer in PP.
They identified general development knowledge (pertaining to tools
and programming language) and project-specific knowledge (about
code structure and bug reproduction) as different knowledge types
which get transferred. In our terminology, which we developed
independently, these would be parts of G and S knowledge, re-
spectively. Furthermore, Jones & Fleming are only concerned with
explicit “teaching”, i.e., only pushing, but no pulling, co-producing,
or pioneering of such knowledge.

Many studies postulate the importance of S knowledge. For exam-
ple, the whole subfield of program comprehension revolves around
acquiring S knowledge [1]. Sillito et al. [26] analyze the types of
questions developers ask about their code base and characterize
how well current tools support extracting information from it. In
contrast, Fritz et al. [13] acknowledge the value of another devel-
oper as an information source and provide a tool that identifies
S-knowledgeable colleagues in a task-specific manner.

Salinger et al. [22] identify the task expert role in some PP ses-
sions, who may provide the S knowledge to close the primary gap.

7.3 Validation with Practitioners
Glaser & Strauss [14, pp. 239f & 245] argue (and Strauss & Corbin
agree [29, p. 23]) that a grounded theory meant for practical applica-
tion needs to be understandable to people working in the respective
area and should allow the user some control over daily situations.
We first validated our concepts by presenting them to practitioners
from four companies, two of which are consulting firms (Q and R)
we approached because our analysis was based on companies with
in-house development only. Then, we also validate three ideas of
how to put our findings to use in everyday development practice.
We mark each validation result as positive (■), negative (□), or
half-positive (⬓).

7.3.1 Validation of Concepts. We discussed the two dimensions
of developers’ task-specific G and S knowledge, five initial pair
constellations,2 and particular session trajectories in interviews
with groups of various sizes: two Scrum Masters (SM) and Product
Owner (PO) in company O (after recording the OA* sessions); six
developers (D), SM, and PO in company P (before recording the PA*
sessions); ten D, SM, and two technical managers (TM) in company
R; and a 1-on-1 interview with a TM in company Q.

(1) The two dimensions were understood in all discussions.
The O-SMs immediately started to characterize their developers
as to their typical G and S levels; O-PO used the dimensions to
characterize recent difficulties across all teams as a “collective G
gap”. To Q-TM, the classic “expert vs. novice” is “too simplistic, too
naive, offensive even”, whereas S and G “resonate better”, they “get
better to the heart of the matter” ; he found thinking about “resolving
an S-gap or a G-gap?” more compelling than “am I a novice?”. ■

(2) The five constellations were quickly understood. O-SM and
O-PO independently identifiedComplementary Gaps as interesting,

2We had not yet seen One-Sided G Gap.

as the “most real and valuable” pairing; O-PO, a P-D, and Q-TM rec-
ognized it from recent experience of working together with different
roles (such as system administrator) or as a common consulting
theme. O-PO found it useful to have names for the constellations.
Q-TM had recent experience with four constellations but not with
Too-Big Two-Fold Gap. Nevertheless, after just seeing the Too-Big
Two-Fold Gap picture, he immediately comprehended the issue:
“Tricky, isn’t it? The developers do not get very far.” ■

(3) In consulting companies Q and R, we wanted to assess the
importance of application domain knowledge (a possible third type
“D”), so we asked for types of relevant knowledge before presenting
the G/S dimensions. We learned that D knowledge is seen to have
little impact on PP session dynamics: Several R-Ds explained that
there are only small D knowledge differences within their team,
but sometimes gaps which only the (non-technical) client can fill.
The far more serious issue is their overall lack of S knowledge, as
due to the legacy system, a developer with a mid S need is already
considered a rare “expert”. They pair program to carefully build up
and maintain S knowledge. Q-TM ranked the problems imposed by
G knowledge lowest because G knowledge can be hired if needed
or be built along the way through pair rotation. ■

(4) While the dimensionsG/Swere understood, the task-specificity
of a developer’s Knowledge Need was not. Instead, both developers
andmanagers tended to think of programmers as having a relatively
fixed, experience-based level with little changes over the course of a
session. Unfortunately, without the task-specific understanding of
S and G needs, the pair constellations can no longer be recognized
as a valuable tool for forming effective pairs. □

7.3.2 Validation of Practical Ideas. With these four companies, we
also discussed three practical ideas for putting our findings to use in
everyday software development, all of which would involve a “G-S
chart”: (5) Consider task-specific knowledge when forming pairs [6,
p. 59], (6) set goals and orient during a PP session, and (7) reflect
on a PP session after the fact.

(5) Forming Pairs: We firmly expect our findings to be useful
for forming effective pairs, but due to point (4), although many
respondents tended to like the idea, none of them reacted enthu-
siastically in this respect. Some were mostly positive, but raised
practical concerns: P-PO said their teams are too small to regularly
offer more than one pairing to chose from. O-PO believed all their
pairings would have the same constellation. ⬓

(6) Setting Session Goals: Before starting session PA4, we asked
developers P1 and P3 to discuss and draw onto a blank G-S chart
their initial and their target constellation. They quickly agreed on a
One-Sided G Gap with no primary and secondary gap and the goal
to address P3’s G need regarding an OR mapper. After the session,
both explained that filling out the chart did not affect their session,
but could have, had there been discrepancies in their respective
Knowledge need assessments to be resolved. ⬓

(7) Reflecting on a Session: We individually asked the developers
after sessions PA1/PA2 (same pair, same day) and PA3 (different
pair) to trace out their trajectory and to discuss the results without
us intervening. In both cases, the pairs had actually seized their G
opportunity during the session but only remembered the primary
and secondary gaps. TheG transfer resurfaced during the reflection,
P3: “Right, I totally forgot about that. That was really cool.” ■

Explaining Pair Programming Session Dynamics from Knowledge Gaps ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Concept Description

S knowledge/G knowledge System-specific knowledge (requirements, overall architecture, detailed design structure, test/build infrastructure, defects,
idiosyncrasies, implementation gaps, etc.) and Generic software development knowledge (programming language details,
design patterns, development tools, and technology stacks, etc.); see Section 4.1.

Knowledge Need Degree of individual developer’s knowledge gap resulting from her existing knowledge and the specific demands of the
task. May pertain to either knowledge type (S and G need, see Sections 4.2 and 4.3).

One-Sided/Two-Sided Gap Characterization of a pair: Either only one pair member or both partners have a Knowledge Need in some regard.

Initial/Target Constellation Constellation of the developers, each with her individual S and G needs, which they assume at the beginning of their
session and which they want to achieve with their session, respectively. We identified six recurring constellations (see
Section 5.1 and Fig. 1):

No Relevant Gaps Neither partner has an S or G need; rarely the initial constellation, the target constellation in most cases (Section 6.1).
One-Sided S Gap One has an unmet S need; e.g. when joining a partner who already started, sometimes also target constellation (Sec. 6.2).
Two-Sided S Gap Both lack system understanding; initial constellation e.g. for debugging tasks, not a target constellation (Section 6.3).
One-Sided G Gap One partner has an unmet G need; opportunity to transfer G knowledge in absence of S need (Section 6.4).
Complementary Gaps One partner has an S advantage, the other for G; satisfactory session possible due to mutual learning (Section 6.4).
Too-Large Two-Fold Gaps Both have high S and G needs; difficult and undesirable constellation (Section 6.5).

Overall Session Dynamics: Three prototypes of session dynamics describing pairs’ trajectories from all initial constellation changes (Section 5.3).
1. Closing the Primary Gap Narrow a one-sided S gap between the developers: either through pro-active explanations, an interview mode, or through

solitary reading of the less knowledgeable partner (Section 6.2.3).
2. Closing the Secondary Gap Narrow a two-sided S gap of both developers by building understanding together and staying in sync (Section 6.3.2).
3. Seizing the G Opportunity Narrow a one-sided G gap between the developers after any S need has been addressed sufficiently (Section 6.4.4).

Table 2: Overview of our grounded concepts

8 CONCLUSIONS AND FURTHERWORK
Our qualitative analysis of 26 real-world industrial pair program-
ming sessions from nine companies led to the following results:

(1) The expert/novice discrimination used in much existing PP
research is not useful. One must consider task-specific knowl-
edge and discriminate S and G knowledge (Section 4.1).

(2) The overall knowledge transfer dynamics of all PP sessions
follows a single pattern: Synchronize S knowledge, acquire
needed S knowledge together, possibly transfer G knowledge
(Section 5.3).

(3) By far most knowledge transfer activity in a PP session con-
cerns S knowledge. One-sided S gaps can require multiple
attempts to resolve (Section 6.2). In contrast, resolving one-
sided G gaps is usually optional (Section 6.4).

(4) Resolving two-sided S gaps are a bread-and-butter activity in
PP and pairs do it routinely (Section 6.3), whereas two-sided
G gaps appear to pose difficulties (Section 6.5).

(5) In summary, there is plenty of evidence that differences in S
knowledge differences are more important those in G knowl-
edge: S needs are addressed first, more knowledge transfer is
concerned with S knowledge, resolving S need is more often
mandatory, and S knowledge transfer is the type that pairs
are more skilled with. General programming experience dif-
ferences are overrated.

Our initial attempts at putting these results to practical use have
shown that further workwill need to create a better didactic concept
to communicate the task-specificity of S and G needs. Only once
this is solved, we will be able to demonstrate the insights’ usefulness
by “selling” PP to teams not currently using it at all. Presumably,
those teams do not recognize which are the pair constellations or
tasks when PP is going to be most useful.

ACKNOWLEDGEMENTS
We thank all participants in our study for talking to us, and allowing
us to record and scrutinize their pair programming sessions. We
also thank our reviewers for their constructive feedback to improve
our manuscript.

REFERENCES
[1] 2019. ICPC ’19: Proceedings of the 27th International Conference on Program

Comprehension (Montreal, Quebec, Canada). IEEE Press.
[2] John R. Anderson. 1976. Language, Memory, and Thought. Psychology Press.
[3] Erik Arisholm, Hans Gallis, Tore Dybå, and Dag I.K. Sjøberg. 2007. Evaluating Pair

Programming with Respect to System Complexity and Programmer Expertise.
IEEE Transactions on Software Engineering 33, 2 (2007), 65–86. https://doi.org/10.
1109/TSE.2007.17

[4] Phillip G. Armour. 2000. The five orders of ignorance. Commun. ACM 43, 10
(2000), 17–20. https://doi.org/10.1145/352183.352194

[5] J. L. Austin. 1962. How To Do Things With Words. Clarendon Press.
[6] Kent Beck. 1999. Extreme Programming Explained: Embrace Change. Addison-

Wesley Professional.
[7] Andrew Begel and Nachiappan Nagappan. 2008. Pair Programming: What’s in

It for Me?. In Proc. 2nd Int’l. Symposium on Empirical Software Engineering and
Measurement (Kaiserslautern, Germany) (ESEM ’08). ACM, New York, NY, USA,
120–128. https://doi.org/10.1145/1414004.1414026

[8] Sallyann Bryant, Pablo Romero, and Benedict du Boulay. 2006. The Collaborative
Nature of Pair Programming. In Extreme Programming and Agile Processes in
Software Engineering, Pekka Abrahamsson, Michele Marchesi, and Giancarlo
Succi (Eds.). Lecture Notes in Computer Science, Vol. 4044. Springer, 53–64.
https://doi.org/10.1007/11774129_6

[9] Sallyann Bryant, Pablo Romero, and Benedict du Boulay. 2008. Pair Programming
and the Mysterious Role of the Navigator. International Journal of Human-
Computer Studies 66, 7 (2008), 519–529. https://doi.org/10.1016/j.ijhcs.2007.03.005

[10] Kathy Charmaz. 2006. Constructing grounded theory: A practical guide through
qualitative analysis. SAGE Publications.

[11] Jan Chong and TomHurlbutt. 2007. The Social Dynamics of Pair Programming. In
Proc. 29th Int’l. Conf. on Software Engineering (ICSE ’07). IEEE Computer Society,
Washington, DC, USA, 354–363. https://doi.org/10.1109/ICSE.2007.87

[12] Madeline Ann Domino, Rosann Webb Collins, Alan R. Hevner, and Cynthia F.
Cohen. 2003. Conflict in Collaborative Software Development. In Proc. 2003
SIGMIS Conf. on Computer Personnel Research. ACM, 44–51. https://doi.org/10.
1145/761849.761856

https://doi.org/10.1109/TSE.2007.17
https://doi.org/10.1109/TSE.2007.17
https://doi.org/10.1145/352183.352194
https://doi.org/10.1145/1414004.1414026
https://doi.org/10.1007/11774129_6
https://doi.org/10.1016/j.ijhcs.2007.03.005
https://doi.org/10.1109/ICSE.2007.87
https://doi.org/10.1145/761849.761856
https://doi.org/10.1145/761849.761856

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Franz Zieris and Lutz Prechelt

[13] Thomas Fritz, Jingwen Ou, Gail C Murphy, and Emerson Murphy-Hill. 2010. A
Degree-of-Knowledge Model to Capture Source Code Familiarity. In Proc. 32nd
Int’l. Conf. on Software Engineering (Cape Town, South Africa) (ICSE ’10). ACM,
New York, NY, USA, 385–394. https://doi.org/10.1145/1806799.1806856

[14] Barney G. Glaser and Anselm L. Strauss. 1967. The Discovery of Grounded Theory:
Strategies for Qualitative Research. AdlineTransaction.

[15] Jo E. Hannay, Erik Arisholm, Harald Engvik, and Dag I.K. Sjøberg. 2010. Effects
of Personality on Pair Programming. IEEE Transactions on Software Engineering
36, 1 (2010), 61–80. https://doi.org/10.1109/TSE.2009.41

[16] Jo E. Hannay, Tore Dybå, Erik Arisholm, and Dag I.K. Sjøberg. 2009. The ef-
fectiveness of pair programming: A meta-analysis. Information and Software
Technology 51, 7 (2009), 1110–1122. https://doi.org/10.1016/j.infsof.2009.02.001

[17] Hanna Hulkko and Pekka Abrahamsson. 2005. A multiple case study on the
impact of pair programming on product quality. In Proc. of the 27th Int’l Conf. on
Software Engineering (St. Louis, MO, USA). ACM, New York, NY, USA, 495–504.
https://doi.org/10.1145/1062455.1062545

[18] Danielle L. Jones and Scott D. Fleming. 2013. What Use Is a Backseat Driver?
A Qualitative Investigation of Pair Programming. In Proceedings of the 2013
IEEE Symposium on Visual Languages and Human Centric Computing. 103–110.
https://doi.org/10.1109/vlhcc.2013.6645252

[19] Matthias M. Müller and Frank Padberg. 2004. An Empirical Study about the
Feelgood Factor in Pair Programming. In Proc. 10th IEEE Int’l. Software Metrics
Symposium (METRICS). 151–158. https://doi.org/10.1109/METRIC.2004.1357899

[20] Laura Plonka, Helen Sharp, Janet van der Linden, and Yvonne Dittrich. 2015.
Knowledge transfer in pair programming: An in-depth analysis. Int’l. J. of Human-
Computer Studies 73 (2015), 66–78. https://doi.org/10.1016/j.ijhcs.2014.09.001

[21] Stephan Salinger and Lutz Prechelt. 2013. Understanding Pair Programming: The
Base Layer. BoD, Norderstedt, Germany.

[22] Stephan Salinger, Franz Zieris, and Lutz Prechelt. 2013. Liberating Pair Pro-
gramming Research from the Oppressive Driver/Observer Regime. In Proc. 2013
Int’l. Conf. on Software Engineering (ICSE ’13). IEEE Press, Piscataway, NJ, USA,
1201–1204. https://doi.org/10.1109/ICSE.2013.6606678

[23] Norsaremah Salleh, Emilia Mendes, and John Grundy. 2011. Empirical Studies
of Pair Programming for CS/SE Teaching in Higher Education: A Systematic
Literature Review. IEEE Transactions on Software Engineering 37, 4 (2011), 509–525.
https://doi.org/10.1109/tse.2010.59

[24] Christian Schindler. 2008. Agile Software Development Methods and Practices
in Austrian IT-Industry: Results of an Empirical Study. In Proc. Int’l. Conf. on
Computational Intelligence for Modelling, Control and Automation (CIMCA), Intel-
ligent Agents, Web Technologies and Internet Commerce (IAWTIC), Innovation in

Software Engineering (ISE). 321–326. https://doi.org/10.1109/CIMCA.2008.100
[25] Todd Sedano, Paul Ralph, and Cécile Péraire. 2016. Sustainable Software De-

velopment through Overlapping Pair Rotation. In Proc. 10th ACM/IEEE Int’l.
Symposium on Empirical Software Engineering and Measurement. ACM Press,
19:1–19:10. https://doi.org/10.1145/2961111.2962590

[26] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. 2008. Asking and answering
questions during a programming change task. IEEE Transactions on Software
Engineering 34, 4 (2008), 434–451. https://doi.org/10.1109/tse.2008.26

[27] Susan Elliott Sim and Richard C. Holt. 1998. The Ramp-Up Problem in Software
Projects: A Case Study of How Software Immigrants Naturalize. In Proc. 20th Int’l.
Conf. on Software Engineering (Kyoto, Japan) (ICSE ’98). IEEE Computer Society,
Washington, DC, USA, 361–370. https://doi.org/10.1109/ICSE.1998.671389

[28] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. 2016. Grounded theory in
software engineering research. In Proc. 38th Int’l. Conf. on Software Engineering
(ICSE). ACM Press, 120–131. https://doi.org/10.1145/2884781.2884833

[29] Anselm L. Strauss and Juliet M. Corbin. 1990. Basics of Qualitative Research:
Grounded Theory Procedures and Techniques. SAGE Publications, Inc.

[30] Jari Vanhanen and Harri Korpi. 2007. Experiences of Using Pair Programming in
an Agile Project. In HICSS ’07: Proceedings of the 40th Annual Hawaii International
Conference on System Sciences. IEEE Computer Society, Washington, DC, USA,
274b. https://doi.org/10.1109/HICSS.2007.218

[31] Thorbjørn Walle and Jo E. Hannay. 2009. Personality and the Nature of
Collaboration in Pair Programming. In Proc. 3rd Int’l. Symposium on Empiri-
cal Software Engineering and Measurement. IEEE Computer Society, 203–213.
https://doi.org/10.1109/ESEM.2009.5315996

[32] Minghui Zhou and Audris Mockus. 2010. Developer Fluency: Achieving True
Mastery in Software Projects. In Proc. 18th ACM SIGSOFT Int’l. Symposium on
Foundations of Software Engineering (Santa Fe, New Mexico, USA) (FSE ’10). ACM,
New York, NY, USA, 137–146. https://doi.org/10.1145/1882291.1882313

[33] Franz Zieris and Lutz Prechelt. 2014. On Knowledge Transfer Skill in Pair
Programming. In Proc. 8th ACM/IEEE Int’l. Symposium on Empirical Software
Engineering and Measurement (ESEM ’14). ACM, New York, NY, USA, 11:1–11:10.
https://doi.org/10.1145/2652524.2652529

[34] Franz Zieris and Lutz Prechelt. 2016. Observations on Knowledge Transfer of
Professional Software Developers During Pair Programming. In Proc. 38th Int’l.
Conf. on Software Engineering Companion (Austin, Texas) (ICSE ’16). ACM, New
York, NY, USA, 242–250. https://doi.org/10.1145/2889160.2889249

[35] Franz Zieris and Lutz Prechelt. 2020. PP-ind: A Repository of Industrial Pair
Programming Session Recordings. arXiv:2002.03121 [cs.SE].

https://doi.org/10.1145/1806799.1806856
https://doi.org/10.1109/TSE.2009.41
https://doi.org/10.1016/j.infsof.2009.02.001
https://doi.org/10.1145/1062455.1062545
https://doi.org/10.1109/vlhcc.2013.6645252
https://doi.org/10.1109/METRIC.2004.1357899
https://doi.org/10.1016/j.ijhcs.2014.09.001
https://doi.org/10.1109/ICSE.2013.6606678
https://doi.org/10.1109/tse.2010.59
https://doi.org/10.1109/CIMCA.2008.100
https://doi.org/10.1145/2961111.2962590
https://doi.org/10.1109/tse.2008.26
https://doi.org/10.1109/ICSE.1998.671389
https://doi.org/10.1145/2884781.2884833
https://doi.org/10.1109/HICSS.2007.218
https://doi.org/10.1109/ESEM.2009.5315996
https://doi.org/10.1145/1882291.1882313
https://doi.org/10.1145/2652524.2652529
https://doi.org/10.1145/2889160.2889249
http://arxiv.org/abs/2002.03121

