
Franz Zieris
zieris@inf.fu-berlin.de

Lutz Prechelt
prechelt@inf.fu-berlin.de

Explaining Pair Programming

Session Dynamics

from Knowledge Gaps

1

mailto:zieris@inf.fu-berlin.de
mailto:prechelt@inf.fu-berlin.de


Motivation

• Expectations in industry:

Why pair-program?

Better design and

fewer defects

Learn from each other or together

Understand legacy parts of the 

software system

• Our Overall Research Goal

– Understand how industrial pair 

programming actually works

• Research Question

What are the underlying

mechanisms of knowledge transfer

in pair programming?

• Intended Outcome

– Advise practitioners

– behavioral (anti-)patterns
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Qualitative Data Analysis
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Theoretical sampling: 26 sessions

(9 companies, 16 pairs)

• from a total of 67 sessions

• Grounded Theory approach

• Recorded industrial PP sessions

(audio, webcam, screen)

= 39.5 hours total



Qualitative Data Analysis
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?

!

OK

Ah!

Rly?

…

Analysis of pair programmers' dialog:

• What do they ask for? What do they explain?

• What do they know? What do they learn?

26 pairings of

professional

developers



Observation 1: The Primary Gap
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One partner already

worked on the task



Observation 1: The Primary Gap
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= task-relevant system knowledge

One partner already

worked on the task

current state of implementation, classes, call hierarchies, 

defects, test/build setup, configuration state, …

Primary Gap

I'll show you

what I did.
OK



What about more homogenous pairs?
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One partner already

worked on the task
Both partners with similar

prior involvement

= task-relevant system knowledge



What about more homogenous pairs?
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Both partners with similar

prior involvement

= task-relevant system knowledge

recently worked

in code area

basic knowledge

of software

working in 

unknown terrain

One partner already

worked on the task



Observation 2: The Secondary Gap
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Both partners with similar

prior involvement

= task-relevant system knowledge

recently worked

in code area

basic knowledge

of software

working in 

unknown terrain

Secondary Gap

Let's look at 

the superclass

console.log(myObj);



Observation 2: The Secondary Gap
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Both partners with similar

prior involvement

= task-relevant system knowledge

Good system

understanding

Medium system

understanding

Little system

understanding

Acquiring System 

Knowledge together

works for most pairs

… but not for all



A Different Kind of Knowledge

11

Type? Function?

I don't even know 

what this is.

S knowledge (task-relevant system understanding)

G knowledge (task-relevant general software

development knowledge)

Data structure holding the application state?

How to modify and read the state?

…

Syntax of programming language?

Higher-order functions?

Application framework?

Test framework?

…

Task: implement test case

Where is the 

initial value?



Roles of S and G knowledge
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S: Task-relevant

System 

Knowledge

G: Task-relevant General Software

Development Knowledge

Large G need: problematic

Small G need:

not problematic

In general: S needs must be addressed for productive work

(e.g., not knowing some test feature)

(e.g., not knowing the test framework)



The G Opportunity
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Do you know the 

Template Method 

pattern?

G Opportunity seized

G Opportunity not seized

Why did she 

do that?

G Opportunity

(e.g., knowing more about

design patterns)

S: Task-relevant

System 

Knowledge

G: Task-relevant General Software

Development Knowledge



Overall Session Dynamic
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S

G

1. Close Primary Gap

2. Close Secondary Gap

3. Seize G Opportunity

Overall Dynamic

26 pairings of

professional

developers
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Overall Session Dynamic
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S

G

1. Close Primary Gap
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Summary
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S

G

• A lack of and differences in 

system understanding are

more important than

differences in general

programming experience

• What matters is task-

relevant knowledge →

different knowledge needs, 

different session dynamic



Summary

19

S

G

• A lack of and differences in 

system understanding are

more important than

differences in general

programming experience

• What matters is task-

relevant knowledge →

different knowledge needs, 

different session dynamic

• Mutually satisfactory

constellation:

Complementary Gaps 
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preprint

http://inf.fu-berlin.de/inst/ag-se/

pubs/ZiePre20-ppsessiondyn.pdf

http://inf.fu-berlin.de/inst/ag-se/pubs/ZiePre20-ppsessiondyn.pdf
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