
Franz Zieris
zieris@inf.fu-berlin.de

Lutz Prechelt
prechelt@inf.fu-berlin.de

Explaining Pair Programming

Session Dynamics

from Knowledge Gaps

1

mailto:zieris@inf.fu-berlin.de
mailto:prechelt@inf.fu-berlin.de


Motivation

• Expectations in industry:

Why pair-program?

Better design and

fewer defects

Learn from each other or together

Understand legacy parts of the 

software system

• Our Overall Research Goal

– Understand how industrial pair 

programming actually works

• Research Question

What are the underlying

mechanisms of knowledge transfer

in pair programming?

• Intended Outcome

– Advise practitioners

– behavioral (anti-)patterns

2



Qualitative Data Analysis

3

Theoretical sampling: 26 sessions

(9 companies, 16 pairs)

• from a total of 67 sessions

• Grounded Theory approach

• Recorded industrial PP sessions

(audio, webcam, screen)

= 39.5 hours total



Qualitative Data Analysis

4

?

!

OK

Ah!

Rly?

…

Analysis of pair programmers' dialog:

• What do they ask for? What do they explain?

• What do they know? What do they learn?

26 pairings of

professional

developers



Observation 1: The Primary Gap

5

One partner already

worked on the task



Observation 1: The Primary Gap

6

= task-relevant system knowledge

One partner already

worked on the task

current state of implementation, classes, call hierarchies, 

defects, test/build setup, configuration state, …

Primary Gap

I'll show you

what I did.
OK



What about more homogenous pairs?

7

One partner already

worked on the task
Both partners with similar

prior involvement

= task-relevant system knowledge



What about more homogenous pairs?

8

Both partners with similar

prior involvement

= task-relevant system knowledge

recently worked

in code area

basic knowledge

of software

working in 

unknown terrain

One partner already

worked on the task



Observation 2: The Secondary Gap

9

Both partners with similar

prior involvement

= task-relevant system knowledge

recently worked

in code area

basic knowledge

of software

working in 

unknown terrain

Secondary Gap

Let's look at 

the superclass

console.log(myObj);



Observation 2: The Secondary Gap

10

Both partners with similar

prior involvement

= task-relevant system knowledge

Good system

understanding

Medium system

understanding

Little system

understanding

Acquiring System 

Knowledge together

works for most pairs

… but not for all



A Different Kind of Knowledge

11

Type? Function?

I don't even know 

what this is.

S knowledge (task-relevant system understanding)

G knowledge (task-relevant general software

development knowledge)

Data structure holding the application state?

How to modify and read the state?

…

Syntax of programming language?

Higher-order functions?

Application framework?

Test framework?

…

Task: implement test case

Where is the 

initial value?



Roles of S and G knowledge

12

S: Task-relevant

System 

Knowledge

G: Task-relevant General Software

Development Knowledge

Large G need: problematic

Small G need:

not problematic

In general: S needs must be addressed for productive work

(e.g., not knowing some test feature)

(e.g., not knowing the test framework)



The G Opportunity

13

Do you know the 

Template Method 

pattern?

G Opportunity seized

G Opportunity not seized

Why did she 

do that?

G Opportunity

(e.g., knowing more about

design patterns)

S: Task-relevant

System 

Knowledge

G: Task-relevant General Software

Development Knowledge



Overall Session Dynamic

14

S

G

1. Close Primary Gap

2. Close Secondary Gap

3. Seize G Opportunity

Overall Dynamic

26 pairings of

professional

developers



Overall Session Dynamic

15

S

G

1. Close Primary Gap

2. Close Secondary Gap

3. Seize G Opportunity

Overall Dynamic

26 pairings of

professional

developers



Overall Session Dynamic

16

S

G

1. Close Primary Gap

2. Close Secondary Gap

3. Seize G Opportunity

Overall Dynamic

26 pairings of

professional

developers



Overall Session Dynamic

17

S

G

1. Close Primary Gap

2. Close Secondary Gap

3. Seize G Opportunity

Overall Dynamic

26 pairings of

professional

developers



Summary

18

S

G

• A lack of and differences in 

system understanding are

more important than

differences in general

programming experience

• What matters is task-

relevant knowledge →

different knowledge needs, 

different session dynamic



Summary

19

S

G

• A lack of and differences in 

system understanding are

more important than

differences in general

programming experience

• What matters is task-

relevant knowledge →

different knowledge needs, 

different session dynamic

• Mutually satisfactory

constellation:

Complementary Gaps 



Summary

20

S

G

• A lack of and differences in 

system understanding are

more important than

differences in general

programming experience

• What matters is task-

relevant knowledge →

different knowledge needs, 

different session dynamic

• Mutually satisfactory

constellation:

Complementary Gaps 

preprint

http://inf.fu-berlin.de/inst/ag-se/

pubs/ZiePre20-ppsessiondyn.pdf

http://inf.fu-berlin.de/inst/ag-se/pubs/ZiePre20-ppsessiondyn.pdf


Images

https://web.archive.org/web/20080509191418/http://www.cenqua.com/pairon/

Icon "design" by Adrien Coquet from the Noun Project

Icon "Bug" by Minh Do from the Noun Project

Icon "knowledge" by Olivia from the Noun Project

Icon "Box" by No More Heroes from the Noun Project

Icon "corner webs" by Kate Maldjian from the Noun Project

Icon "Computer" by Denis Shumaylov from the Noun Project

21

https://web.archive.org/web/20080509191418/http://www.cenqua.com/pairon/

