
Liberating Pair Programming Research from the
Oppressive Driver/Observer Regime

Stephan Salinger, Franz Zieris, Lutz Prechelt
Freie Universität Berlin
Institut für Informatik

Takustr. 9, 14195 Berlin, Germany
salinger|zieris|prechelt@inf.fu-berlin.de

Abstract—The classical definition of pair programming (PP)
describes it via two obvious roles: driver (the person currently
having the keyboard) and observer (the other, alternatively called
navigator). Although prior research has found some assumptions
regarding these roles to be false, so far no alternative PP role
model took hold. Instead, most PP research tacitly assumes the
classical model to be true and thus PP to be no more difficult
than solo programming.

We perform qualitative research (using Grounded Theory
Methodology) to find a more realistic role model, and have
uncovered a suprising complexity: There are more than two roles,
they are assumed and unassumed gradually, multiple roles can
be held by one person at the same time, and some of their facets
are subtle.

Mastering this complexity requires specific PP skills beyond
mere programming and communication skills. By ignoring such
skills, previous PP studies (in particular the controlled experi-
ments) have investigated a rather mixed bag of situations, which
explains their heterogeneous results.

The emerging result is that qualitative research on the PP
process will lead to constructive behavioral advice (process
patterns) for pair members and to more meaningful designs for
quantitative PP research.

I. ON PAIR PROGRAMMING

The “classical” definition of pair programming (PP) is
probably the one by Williams, Kessler, and Cunningham [1]
which says “In pair-programming, two programmers jointly
produce one artifact (design, algorithm, code, etc.). The
two programmers are like a coherent, intelligent organism
working with one mind, responsible for every aspect of this
artifact. One partner is the ’driver’ and has control of the
pencil/mouse/keyboard and is writing the design or code. The
other person continuously and actively observes the work of
the driver – watching for defects, thinking of alternatives,
looking up resources, and considering strategic implications
of the work at hand. The roles of driver and observer are
deliberately switched between the pair periodically. Both are
equal, active participants in the process at all times and wholly
share the ownership of the work products whether they be a
morning’s effort or an entire project.” The Observer role is
sometimes called Navigator instead, but with the same idea of
its meaning.

PP is claimed to reduce the wall-clock time required, to
improve the design quality of the resulting code, to reduce the
number of defects that remain in code, to accelerate learning,
to improve the information flow within a team, to reduce

bottlenecks in the availability of someone knowing a particular
piece of code, to be more fun, and to have various other
positive properties [2].

PP advocates suggest that PP should be the standard or
even exclusive mode of programming. PP skeptics (e.g. from
management) usually doubt that it can be wise to invest up to
twice the amount of resources if a single programmer could
also solve the task.

II. ON PAIR PROGRAMMING RESEARCH

There is a substantial body of empirical research on PP;
most of the studies are controlled experiments. They find that
PP is usually faster than solo programming (in hours, not
person hours) and that it tends to reduce the number of defects
in the resulting code [3]. Some surveys and interviews show
that pair programmers have higher confidence in their work
results and tend to have higher work satisfaction ([1], [4]–
[6]).

There is substantial conflict across many results; for instance
in a meta-analysis done by Hannay et al. [3] regarding the
duration, “two of [...] 11 studies show a negative effect, while
the remaining nine show positive effects. [...] Heterogeneity
is significant at a medium level [...].” Empirically founded
explanations for these differences are yet lacking.

Almost all previous PP research tacitly assumes
1) that whenever you stick two people together to do PP,

the above classical definition will apply, and
2) that, while general programming skill, general commu-

nication skill, and domain knowledge are important for
PP success, there is no such thing as a relevant PP skill.

III. OUR PAIR PROGRAMMING RESEARCH APPROACH

In our work, we are interested in how (not just how well)
PP actually works: what it is that the pair members really do
and how that contributes (or doesn’t) to the positive properties
listed as claims above. Our long-term goal (which we have
been following since 2004) is to describe how to do PP well
and what to avoid and to explain this in the form of behavioral
patterns and anti-patterns.

We are convinced that the second of the above tacit assump-
tions is dangerous. We will present evidence that carrying out a
PP session is a complex process and therefore requires specific

PP skill. Ignoring this fact will produce misleading research
conclusions.

The first of the tacit assumptions is also dubious. For
instance, Sallyann Bryant has investigated its implicit claim
that driver and observer are mostly working on different
abstraction levels: The driver on medium levels (“the code”),
the observer on high (“strategic implications”) and low levels
(“defects”). She found that this is not the case; rather, driver
and observer mostly move through similar levels of abstraction
together [7]. However, Bryant’s work stops at this point; she
does not propose an alternative model of PP roles.

Our research has now led us to the topic of roles, so we
start filling this gap in the present work. Our results so far
are not primarily a new set of roles, but rather a meta model
describing the elements and context of roles and role use. The
present article focuses on conclusions from these incomplete
results regarding the overall approach needed for meaningful
PP research.

Methodologically, our raw data comprises recordings of
complete PP sessions, consisting of desktop video, webcam
video, and audio. We analyze such data by conceptualizing it
via the Grounded Theory Methodology (GTM), in particular
open coding and axial coding [8], starting at a fairly fine
granularity, one code typically covering one or a few seconds
of material [9]. The results sketched below arise from the first
few PP sessions we have analyzed.

IV. PAIR PROGRAMMING ROLES

When we started our GTM analysis with the goal of iden-
tifying PP roles, we encountered a confusing variety of role-
related phenomena. To create order, we arranged the stable
concepts formed from these phenomena into a PP roles meta
model. A simplified version is shown in Figure 1.

Note there are two different perspectives on PP roles:
• The researcher perspective is interested in understanding

and characterizing the roles.
• The practitioner perspective is interested in obtaining

practical advice on PP behavior such as role use.
The meta model adopts the researcher perspective: it is pri-
marily a tool that helps the analysis process. Our discussion
is mostly from the researcher perspective and considers the
practitioner perspective only on the side, because the results
are only just emerging and not yet mature enough to formulate
much practical advice.

This section will proceed to present the (simplified) meta
model and explain each of its classes; the roles themselves
are instances of one of these classes and only some will be
described as examples that serve to explain the meta model
concepts and ideas.

A. 1st Role, Role, Facet, Action

In the meta model, a Role is described by means of
characteristic Facets. For example, the Role watchman has
three Facets:

• recognizing hazards: Detecting and mentioning issues
that could become problematic, for example asking

whether the current set of files is up-to-date with respect
to the versioning system or considering possible negative
consequences for the ongoing overall release process in
case the PP session does not achieve its goal fully.

• setting priorities: Insisting that something be done now
(or early enough) to avoid negative or ensure positive
consequences.

• shifting: Triggering a switch from one context of con-
sideration into another, for example from considering the
specific PP session to considering the overall develop-
ment process.

Roughly speaking, the mission of a watchman is momentarily
making sure nothing bad happens while the partner is occupied
with something else.

Unfortunately, a mission as such is difficult to observe when
looking at a specific PP session. In contrast, the Facets connect
the Role to Actions, which are readily observable. There is no
fixed rule as to which or how many Facets must be observed
to conclude the respective pair member has assumed the Role.
Usually, a single Facet is sufficient if it occurs multiple times
and multiple Facets are sufficient even if they occur only once,
but this depends on the particular Role and situation.

When it comes to the watchman, for instance, one might
see just one single instance of recognizing hazards, but al-
ready consider the watchman role to be filled, because it is
obvious that only prolonged attention can have enabled the
pair member to make this particular intervention.

If such attention was observable, it would be a Facet,
because it is quite typical and characteristic of watchman
behavior. However, as attention can be observed only indi-
rectly and this happens only rarely, we have decided that,
for our role analysis, the attention concept is insufficiently
operationalizable to become a Facet.

Note that, from the practitioner perspective, learning to
be attentive is likely key to learning to use the watchman
role properly. So once we move from role analysis to giving
constructive advice, the Roles will have to be reformulated to
include relevant unobservable aspects as well.

B. 2nd Role, Knowledge, Context, Episode

As a second example, the Role task expert has two Facets:
• Facet-1, passing on task knowledge explicitly: Task

knowledge is Knowledge about artifacts created before
the current PP session that is relevant for the task ad-
dressed by the session. The Facet describes communi-
cation of such knowledge from one pair member to the
other.

• Facet-2, turning task knowledge into proposals: Making
a product-related or process-related proposal that only
someone who is in possession of appropriate task knowl-
edge can make.

Roughly speaking, the mission of a task expert is to bring
into the session a certain important type of task-relevant
information.

For task expert it is common that an occurrence of only one
of the Facets is sufficient for ascertaining the Role. Which of

promote or inhibit

may direct

influence

influences

influence /
may be part of

is part of

is part of
lead to

is part of

constitute
Facet D

Facet C

Facet A

Facet BRole

Action Episode

Personality
Traits

Findings /
Knowledge

Context

Role

Fig. 1. Simplified meta model of PP-roles-related phenomena. The figure uses an informal notation whose semantics will become sufficiently clear within
the text.

the Facets to expect depends on the current Context within the
session: A PP session can usually be interpreted as a sequence
of Episodes. If, for instance, the session is currently in a
knowledge transfer episode, a task expert will execute his/her
role only in the form of Facet-1, not Facet-2.

C. 3rd Example, Personality Traits

A spokesperson has the mission to act as representative for
a concern, typically towards people outside the pair. Facets of
the spokesperson Role are:

• opening a dialog about the concern.
• carrying forward the dialog, often in such a way that

expert knowledge is not required.
• rounding off the dialog: Not accepting an end of the

dialog without a resolution of the concern.

It is typical for the spokesperson Role that it is assumed by
the more assertive member of the pair. Assertiveness, however,
is a Personality Trait and should not be confused with a Facet
or Role.

D. Other Roles

There are many more Roles beyond the above three, but
our analysis of them is far from complete. We have, however,
already recognized some regular structures. One of them is
the fact that some Roles have counterparts. For instance
when a Facet-1-type task expert explains task knowledge, the
other pair member acts as mentee. A task expert can have a
counterpart, but needs not (the Facet-2 case), while other Roles
never have a counterpart (e.g. watchman) or always enforce
or require one (e.g. guide and robot).

E. Further Observations from Our Role Analysis

Three facts complicate defining Roles or recognizing Role
assumptions:

• A Role assumption may start and end gradually over a
stretch of time.

• Having a Role does not mean acting out that Role at
every moment.

• A pair member may have more than one Role at the same
time.

The full version of the meta model uses several additional
classes (for instance Role Filling and Facet Execution) to
describe such phenomena.

F. Towards a Better Role Catalog

We found that we could define Facets reasonably well but
the notion of a particular Role always remained somewhat
arbitrary. For instance, we once had an updater Role that
occurred only at the beginning of a session and explained
the initial status of the artifacts to make clear from where
the work will have to start. We have since incorporated this
in the much more general task expert Role and find this new
Role quite convincing and appropriate. In contrast, we also
had a more specialized predecessor of watchman: The foreign
minister Role whose mission amounted to only a subset of
the recognizing hazards Facet of today’s watchman. Yet, even
though we have generalized away the foreign minister Role,
we are far from convinced that the watchman Role will persist
in its current form.

It may well be that we will never find a canonical set of
Roles that is convincing for everybody, in particular since pair
programmers’ Role needs will likely be different depending

on their work context and tasks. One solution might be to
define a somewhat larger set of overlapping Roles from which
a pair can pick the ones they deem most appropriate for their
purposes.

V. WHAT IS EMERGING?
Above, we have sketched roles assumed by PP participants

during a PP session that go far beyond the conventional
driver/observer role model in many respects:

• PP participants fulfill more different, conceptually sep-
arate functions (the Facets) than only the commonly
described and hopelessly overloaded driver and observer
(or navigator) roles.

• There are hence also far more than just two roles.
• It is not at all obvious which Facets belong together to

form a meaningful role.
• “having the keyboard” and “using the keyboard” are

Facets, but they are neither particularly highly relevant
nor relevant throughout.

• Roles are switched more frequently and more fluently
than meets the eye.

The list of roles and also the understanding of the contents
of each role are still incomplete; the understanding of the
influence that each role has on the PP process overall is only
just emerging.

Nevertheless, this extended view of how the members of
the pair complement each other has a number of important
consequences:

• The driver/observer model, with its inflexible assignment
of responsibilities, may mislead beginning pair program-
mers into dysfunctional behavior.

• There is currently a lack of guidance how to do PP
efficiently.

• This also means that previous PP research may have
investigated a wild mix of different PP styles and pair
member PP competence levels, which may explain the
partially inconsistent results.

• Therefore, qualitative (and qualitative-quantitative) PP
research should be used more often, to facilitate better
use of PP by painting a more complete picture of what
PP actually is and by eventually providing guidance in the
form of best practices. For instance, the relative frequency
with which different roles (should) occur in a session may
correlate with task type. If task type is known, this can
allow programmers to focus on important PP activities
(“we must not neglect X-role behavior”).

ACKNOWLEDGMENTS

This work was partially supported by a DFG grant.

REFERENCES

[1] L. Williams, R. R. Kessler, W. Cunningham, and R. Jeffries, “Strength-
ening the case for pair programming,” IEEE Software, vol. 17, no. 4, pp.
19–25, 2000.

[2] L. Williams and R. Kessler, Pair Programming Illuminated. Addison-
Wesley Professional, 2002.

[3] J. Hannay, T. Dybå, E. Arisholm, and D. Sjøberg, “The effectiveness of
pair programming: A meta-analysis,” Information and Software Technol-
ogy, vol. 51, no. 7, pp. 1110–1122, 2009.

[4] B. Hanks, C. McDowell, D. Draper, and M. Krnjajic, “Program quality
with pair programming in CS1,” in ITiCSE ’04: Proceedings of the 9th
Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education. New York, NY, USA: ACM Press, 2004, pp. 176–
180.

[5] C. McDowell, L. Werner, H. E. Bullock, and J. Fernald, “The impact of
pair programming on student performance, perception, and persistance,”
in ICSE ’03: Proc. 25th Int’l Conf. on Software Engineering. IEEE
Computer Society, 2003, pp. 602–607.

[6] J. T. Nosek, “The case for collaborative programming,” Communications
of the ACM, vol. 41, no. 3, pp. 105–108, 1998.

[7] S. Bryant, P. Romero, and B. du Boulay, “Pair programming and the
mysterious role of the navigator,” International Journal of Human-
Computer Studies, 2008.

[8] A. L. Strauss and J. M. Corbin, Basics of Qualitative Research: Grounded
Theory Procedures and Techniques. SAGE, 1990.

[9] S. Salinger and L. Prechelt, “What happens during pair programming?”
in Proceedings of the 20th Annual Workshop of the Psychology
of Programming Interest Group (PPIG ’08), Lancaster, England,
September 2008, www.ppig.org. [Online]. Available: http://www.ppig.
org/workshops/20th-programme.html

